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ABSTRACT 

Detection of unusual behavior is an important topic in 
signal and image processing. Because of the topic’s 
complexity, addressing it as a solely RGB video analysis 
problem raises significant challenges. This has resulted in 
approaches that aim at exploiting different data modalities 
that can overcome the inherent restrictions of unimodal 
techniques. Moreover, the classification outcome of such 
approaches is affected not only by the input data, but also by 
previous classification history. To this end, this paper 
introduces a novel deep-NARMA filter that extends a typical 
CNN architecture, and endows it with autoregressive moving 
average behavior. In addition, it incorporates a data fusion 
framework that supplements RGB video streams, with 
thermal capturing and information about the distortion of 
WiFi signal reflectance. Experimental results indicate a better 
performance compared to conventional as well as deep 
learning approaches. 

Index Terms—unusual behavior, deep learning, 
NARMA.  

1.  INTRODUCTION 

Identification of unusual or abnormal behavior is a crucial 
topic in research community triggering a range of 
applications in different domains such as security/safety and 
production quality assurance [1], [2], [3]. Nowadays, the 
most popular way to identify unusual human behaviors is 
through the exploitation of video cameras (either disjoint or 
overlapping) on the use of video surveillance systems. 
Towards this direction, computer vision tools and machine 
learning algorithms are properly interwoven to detect 
physical intrusions, especially of humans, usually for public 
area or critical infrastructures [4]. The main drawback of all 
these single modality approaches, are the inherent restrictions 
of the information captured. For instance, approaches based 
on unimodal visible spectrum analysis are vulnerable to 
occlusions, luminosity changes, light reflections, etc. This 
has recently spawned a number of techniques that leverage 
multimodal processing and data fusion, to compensate these 
inherent limitations by supplemental information from other 
modalities. 

Apart from the Red Green Blue (RGB) visible spectrum 
data, thermal information is another useful input for detecting 
human intrusion or unusual behaviors. Thermal sensors are 
not sensitive to changes in illumination [5]. However, the 
information captured does not include texture or color 
information, and due to the fact that target objects are not 
always homogeneous in temperature, object detection 
becomes an arduous task. Since both RGB and thermal 
sensing are actually based on visual cues, they should be 
supplemented by additional data that are not limited by the 
restrictions of visual information (e.g. occlusions). An 
interesting modality for consideration, is the monitoring and 
analysis of distortions in radiofrequency transmissions such 
as reflectance of WiFi signals, used for wireless 
communication [6]. However, unusual behavior 
identification cannot be accurately produced by simply 
monitoring WiFi reflectance, as they cannot model complex 
behavior (e.g., human motion trajectories), thus the modality 
is mainly useful as additional information combined with 
other information streams, (i.e., thermal and RGB imaging). 
For this reason, information fusion across the aforementioned 
modalities improves unusual behavior detection. 

The main difficulty in such fusion process is to extract a 
suitable set of features that can represent the meanings of the 
fused complex data. Convolutional Neural Networks (CNNs) 
have shown to be excellent feature detectors [7]. For this 
reason, our classifier is based on a CNN framework. 
Nevertheless, the key problem of adopting conventional CNN 
architecture in our case is that spikes may appear in the 
classification outputs since input data are independently 
processed per time instance. To address this, we need to 
modify the traditional CNNs so as to be able to model auto-
regressive and moving average (ARMA) ([9],[10]) 
behaviors.  This allows for a smooth human intrusion 
detection process since previous classification outputs are 
also taken into account for the classification of current states. 
Thus, we need to introduce a modification of the CNN 
architecture to capture the ARMA properties in a non-linear 
context.   

1.1  Related Work 

Detection of unusual behavior is a well-studied problem of 
smart surveillance such as in [11] and [12]. A definition of 
abnormal behavior is given in [1]  as an occurrence of 
abnormal events that are “rare in the scene and which are 
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different from the majority”. Smart surveillance systems 
process video streams using a variety of techniques such as 
pixel based techniques [13], trajectory based techniques [14], 
a fusion of trajectory and pixel information [1],  object 
detection frameworks such as [15], background and target 
modelling [16], object tracking [17], activity recognition 
[18], [19], crowd dynamics [20], real-time critical application 
scenarios [21] and even choreographic time series modelling 
[22]. These techniques though powerful, leverage 
information relevant to visual cues, thus they are vulnerable 
to occlusions, hidden fields of view or poor visual conditions. 
Thermal information is also considered as an alternative [5], 
but with the limitation of low representation capabilities in 
texture modelling.  

On the other hand, localization by using properties of 
radiofrequency devices can also provide useful information. 
These techniques are either device free approaches based on 
Software Defined Radio (SDR) or approaches that leverage 
commercial off the shelf (COTS) devices [6]. The device free 
approach analyses the Received Signal Strength of a 
transmitted signal but they do not provide efficient accuracy 
[23]. On the contrary COTS approaches have been shown to 
provide accurate detection of human presence, since they 
exploit Channel State Information (CSI) [9].  

Recently, deep learning techniques, such as CNN, have 
been favored over traditional learning methods, such as SVM 
or shallow feedforward neural networks, for unusual behavior 
detection [1], [18], [7]. This is mainly due to high 
representational capabilities of deep learning methods. 
However, the limitation of such approaches is that they do not 
take into consideration previous classification outputs that 
need to be fed back to the network to model an autoregressive 
behavior.  

1.2  Our Contribution 

In this paper, we introduce a Deep-Non-linear Auto-
Regressive Moving Average (Deep-NARMA) filter that 
leverages the representational capabilities of Convolutional 
Neural Networks (CNN), properly modified to cope with the 
autoregressive nature of a tapped delay line, and transforms 
the inputs in an efficient non-linear feature map. The 
proposed classifier achieves an effective feature 
representation of the heterogeneous inputs but it 
simultaneously introduces an input-and output memory. We 
also propose a novel data fusion processing of three different 
modalities to improve the detection accuracy of unusual 
behavior. Specifically, alongside the normal RGB 
surveillance, we leverage also thermal imaging, as well as 
measurements of wireless signal reflection for human 
presence detection. While a number of works has been 
published using fusions of RGB and thermal modalities, such 
as in [24] and [25], to our knowledge there are no previous 
works in the literature that consider fusion of thermal and 
RGB imaging with WiFi reflectance data.  

 

2.  THE PROPOSED DEEP NARMA FILTER 

Let us denote as 𝑦 𝑛 = [𝑃&,𝑃(]*a 2x1 vector that contains the 
probabilities Ps and Pu, that the observations at time instance 
n can be classified as suspicious or unusual behavior (class s) 
or normal behavior (class u). Let us now assume that there is 
a non-linear function that relates probabilities 𝑦 𝑛  with 
some measurable observations 𝑥(𝑛). The output 𝑦 𝑛  is 
related with the current and previous observations over a time 
window of q previous instances. We denote as 𝑥 𝑛 − 𝑗 , 𝑗 =
0, … , 𝑞 − 1 these q previous observations. In the following 
notation, we assume that 𝑥(𝑛) are multidimensional tensors 
of the input data. Assuming a non-linear dependency of the 
classification output and the previous classification values, 
we derive a non-linear autoregressive-moving average 
model: 

𝑦 𝑛 = 𝑔 𝑥 𝑛 − 1 ,… , 𝑥 𝑛 − 𝑞 , 𝑦 𝑛 − 1 ,… ,
𝑦 𝑛 − 𝑝 + 	  𝑒 𝑛 	  	  

(1)	  	  	  	  

where 𝑔(∙) refers to the non-linear relationship and p, q 
express the order of the model. Vector 𝑒(𝑛) is an independent 
and identically distributed error. Eq. (1) cannot be easily 
calculated, as 𝑔(∙) is unknown. It is clear that Eq. (1) 
resembles an NARMA(p,q) model. The use of machine 
learning methods can produce an approximation of 𝑔(∙) in a 
way that minimizes the error 𝑒(𝑛). A feed forward neural 
network (FNN) with a tapped delay line input filter can 
simulate the behavior of a NARMA model [26].  A recursive 
implementation has also been proposed in [27]. However, this 
FNN model fails at effectively selecting features of high-
dimensional space and complex heterogeneous 
environments.  

Convolutional Neural Networks have demonstrated 
excellent representational capabilities in feature selection 
such as in [7], [8], [28]. The proposed Deep-NARMA filter 
combines the effectiveness in feature selection of CNN with 
the autoregressive nature of a tapped delay line, in order to 
select optimal features that enable the classification of the 
observed behaviors. We extend the traditional CNN 
architecture by adding a tapped delay line in the input layer, 
to organize the external input data 𝑥 𝑛 	  as well as to feed 
back the previous classification outputs. This extension 
includes two terms, the moving average term that delays the 
input 𝑥 𝑛 	  for q discrete previous times, and the 
autoregressive term that delays the output 𝑦(𝑛) for p previous 
discrete instances. Previous classification outputs affect the 
current output, as temporal dependencies occur.  

After the expanded input layer that receives the current 
data (RGB, thermal, WiFi) and the delayed responses over 
previous times, we proceed with the convolutional/pooling 
layers. This layer applies convolutional transformations on 
the input data so as to maximize the classification 
performance. The convolutions are executed over the input 
data and a set of kernels, in order to select appropriate 
features. The kernel parameters are estimated in a way that 
minimizes the performance error on a ground-truth training 
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set. The L feature maps, denoted as f1, f2,…, fL are used as 
inputs in the final (classification) layer. In the experimental 
evaluation of section 4, the convolutional/pooling layers 
consist of three different convolutional layers, with 5x5x4, 
5x5x32 and 5x5x32 respective filter sizes, separated by the 
ReLU and Max pooling components.  

The final component of the filter is the classification layer 
that receives the f1, f2,…, fL feature maps and triggers a 
supervised behavior classification. The fi feature maps are 
tensors with dimensions that express the spatial attributes and 
the different modalities of the input data.  

The classification layer consists of r neurons, each 
stimulating a non-linear operation, where the sigmoid is 
neuron activation function. If we denote as 𝑤;,< the weights 
that connect the i-th feature map 𝑓; with the j-th hidden 
neuron of the classification layer, then the output of this 
neuron will be 𝑢< = 𝜑(w<* ∙ 𝑓), where 𝑓 is the aggregate 
feature map concatenating all features 𝑓; and w< the aggregate 
weights for the j-th hidden neuron. Then, output will be given 
as: 
	   𝑦A 𝑛 = 𝜑 𝑣* ∙ 𝑢 ≡ 𝜑(𝑧A(𝑛))	   (2)	  

where u includes all outputs 𝑢< over all the r hidden neurons 
and v the aggregate weights connecting the r hidden neurons 
of the classification layer with the output neuron. In Eq. (2), 
𝑧A(𝑛) expresses the input of the final output neuron before 
applying the activation function 𝜑(∙). In the previous 
notation, we have assumed that the classification output 
consists of one neuron. Extension to multiple neurons is 
straightforward. Subscript w in Eq. (6) denotes the 
dependence of the classification on the network weights 
which will be estimated through a learning process. In our 
configuration, the proposed model consists of 64 hidden 
layers and two output neurons.  
A schematic of the proposed architecture is presented in 
figure. 

 
Figure 1: Architecture of the proposed Deep-NARMA Filter 

3.  MODELLING OF INPUT DATA 

3.1  Visual Spectrum Imaging (RGB) 

The most common surveillance data modality consists of 
RGB video streams. The raw captured data are preprocessed 
using the YOLO (You Only Look Once) object detection 

framework [15], which models the object detection as a 
regression problem by separating the input image in bounding 
boxes, that are assigned class probabilities. The object 
detection is executed via a CNN architecture of 24 
convolutional layers and 2 fully connected layers. 

Each frame is described as a class image CLRGB, with the 
same size as the RGB image, where the (x,y) pixel of the RGB 
image I(x,y) is denoted as 𝑜G,HIJ(𝑥, 𝑦), in the class in the 
following way: 

 𝐶𝐿HMJ 𝑥, 𝑦 = 	   𝑜G,HIJ(𝑥, 𝑦)	   (3)	  

where k represents the object with identity k in the YOLO 
object detection framework.   

3.2  Thermal Imaging  

The thermal captured data are preprocessed using the 
background subtraction algorithm of [5]. Similarly with the 
RGB modality, we extract a class label image CLT, the same 
size as the input thermal frame T, where the (x,y) pixel of T is 
denoted in the class label image as: 
𝐶𝐿* 𝑥, 𝑦 = 𝑜O,* 𝑥, 𝑦 , 𝑏 = {𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑}	  (4)	  

3.3   WiFi signal reflection  

The identification of human intrusion in this modality is 
achieved by exploiting the Channel State Information (CSI) 
metric of commercial WiFi devices, as is the case in [9]. CSI 
models the signal propagation from a transmitter to a 
receiver, and supports many subcarriers, due to the 
Orthogonal frequency Division Multiplexing (OFDM) 
principle. Physical attributes of the wireless channel (e.g. 
power decay, scattering) are measured with respect to 
distance, fading, shadowing and effects of interference [9] 
The measurement of the K available sub-carriers is: 
	   𝐻 𝑛 = 𝐻 𝑛, 𝑓\ 	  	  𝐻 𝑛, 𝑓] 	  ⋯ 	  𝐻 𝑛, 𝑓_ *	   (5)	  

where 𝐻 𝑛, 𝑓;  refers to the amplitude and the phase of the i-
th subcarrier with central frequency 𝑓;. Therefore, we have 
that: 𝐻 𝑛, 𝑓; = 𝐻(𝑛, 𝑓;) 𝑒<∠b(c,de). 

A preprocessing of H(n) must be executed to remove 
outliers and noise. This is achieved via the use of a Hampel 
identifier and wavelet denoising respectively [10]. After 
removing outliers and noise we proceeded in normalizing the 
signals and eigenvector processing. The final stage of 
preprocessing includes normalization, correlation of 
subcarriers and eigenvector processing of the signals (Fig. 2).  
The pre-processed CSI data are analyzed using a linear SVM 
classifier in order to detect human intrusions in a scene.  The 
produced classification IDs, say CWiFi(n) are also used as 
input in the proposed fused deep learning classifier.,  
	   𝑥A;d; 𝑛 = 𝐻 𝑛 	  	  𝐶f;g;(𝑛) *	   (6)	  

4.  EXPERIMENTAL VALIDATION 

4.1  Dataset Description 

The evaluation of the proposed solution used a dataset that 
has been captured as part of the EU Horizon 2020 STOP-IT 
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Project (https://stop-it-project.eu/) (grant agreement No. 
740610), a research initiative that addresses the protection of 
critical water infrastructure. The dataset consists of RGB, and 
thermal video streams and WiFi reflectance information. The 
RGB data were captured using and OB-500Ae camera with 
1280x720 pixel resolution and 30 fps framerate, while for the 
thermal capturing we used a Workswell InfraRed Camera 640 
(WIC) with a 640x512 pixel resolution and a 30 fps 
framerate. The WiFi reflectance data were captured using a 
transmitter-receiver couple that consisted of a WiFi router 
(TP-Link N300 TL-WR841N) and an Intel 5300 NIC 
receiver, capturing once every 10 seconds. The data were 
labeled based on pre-determined scenarios co-defined by end 
users that designated whether the captured human behavior 
over all data modalities can be considered as unusual. All the 
data were normalized to be in the same range, from 0 to 1. 

The computer used for all training and testing was an 
Intel® Core™ i7-6700 CPU@ 4000 GHz CPU with 16GB of 
RAM and an NVIDIA GeForce GTX 1070 with 8GB DDR5 
memory. The deep learning models also used the CUDA 9.2 
Toolkit. 

4.2  Evaluation Results 

The classification performance of the proposed Deep 
Convolutional NARMA filter was compared with different 
classifiers. To illustrate the results of fusion between different 
modalities we executed unimodal classification scenarios 
with (i) a linear kernel SVM, (ii) a non-linear Radial Basis 
Function SVM (RBF-SVM), (iii) 2 different architectures of 
a traditional feedforward neural network with 1 hidden layer 
of 10 neurons/layer and 2 hidden layers of 10 neurons/layer 
respectively. The results of these models in the unimodal and 
the multimodal case, are presented in Figure 2, which 
showcases how data fusion of the proposed modalities 
increased the classification accuracy.  
 

 
Figure 2: Effect of fusion of different data modalities in 
classification performance 

In the multimodal use case, we proceeded in extensive 
evaluation of the proposed model, comparing it with the 
aforementioned “shallow” classifiers, as well as with two 
additional deep learning models, a Long Short-Term Memory 
(LSTM) deep recurrent neural network, as well as with a 
CNN. The CNN’s structure was identical with the one used 
in the proposed Deep NARMA filter, but without the 
proposed expansion to generate the model’s autoregressive 
behavior. The classification performance was measured using 

traditional performance metrics, i.e. accuracy, precision, 
recall and F1 scores. The results of this evaluation is depicted 
in Table 1. Moreover, the effects of adding autoregressive 
characteristics to the model are presented in Figure 3 

Table 1: Classification performance metrics on multimodal 
experiments 

Classification 
Method  

Precision Recall Accuracy F1 
Score 

SVM-Linear 68.51% 61.71% 77.36% 64.93% 
SVM-RBF 66.99% 60.06% 76.11% 63.34% 
FNN1 69.95% 63.30% 78.52% 66.46% 
FNN2 70.13% 63.50% 78.66% 66.65% 
LSTM 81.14% 76.12% 87.11% 78.55% 
CNN 81.62% 76.69% 87.46% 79.08% 
Deep-
NARMA 89.76% 86.66% 93.23% 88.18% 

 

 
Figure 3: Effect of autoregressive behavior in the classification 
performance 

5.  CONCLUSION 

The identification of unusual behavior from surveillance 
systems is an arduous and complex task, the performance of 
which is bounded by the model’s properties and the inherent 
limitations of the captured data modality.  To address these 
drawbacks we proposed a deep convolutional NARMA 
model alongside a multimodal data fusion framework, that 
expands the monitoring capabilities of the model beyond a 
single data type, and allows it to better adapt to dynamic 
events, such as suspicious human movements. 

The proposed methods were experimentally evaluated 
using a dataset captured in the context of the Horizon 2020 
STOP-IT project. The results clearly indicate that 
autoregressive and multimodal approaches enhance typical 
deep learning models in terms of performance for identifying 
unusual behaviors. 
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