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ABSTRACT

In this paper, we present a multi-modal online person verification
system using both speech and visual signals. Inspired by neurosci-
entific findings on the association of voice and face, we propose an
attention-based end-to-end neural network that learns multi-sensory
association for the task of person verification. The attention mecha-
nism in our proposed network learns to conditionally select a salient
modality between speech and facial representations that provides a
balance between complementary inputs. By virtue of this capabil-
ity, the network is robust to missing or corrupted data from either
modality. In the VoxCeleb2 dataset, we show that our method per-
forms favorably against competing multi-modal methods. Even for
extreme cases of large corruption or missing data on either modality,
our method demonstrates robustness over other unimodal methods.

Index Terms— person verification, recognition, multi-modal,
cross-modal, attention, missing data.

1. INTRODUCTION

From cognitive and neuroscience studies on the integration of face
and voice signals in humans, it has been observed that the face-
voice association is treated differently in human’s brain compared to
other paired stimuli [1], and that this perceptual integration plays an
important role and is actually leveraged for person recognition pro-
cessing [2]. Inspired by these findings, computational models have
been recently introduced to understand whether, and to what extent,
such models can leverage associations between different modali-
ties. To investigate this multi-modal association, Nagrani et al. [3],
Horiguchi et al. [4] and Kim et al. [5] presented a face-voice cross-
modal matching task by learning a shared representation for both
modalities. Neural network based cross-modal learning is explored
to distill common or complementary information from large-scale
paired data. In particular, Kim et al. showed that their computational
model has similar behaviors to humans.

Based on these explorations of multi-modal computational
learnability, we investigate the use of multi-modal neural networks
for a more specific and challenging task, i.e., person verification.
There has been some work that investigates person verification us-
ing multi-modal biometric data [6, 7, 8, 9, 10, 11]. These methods
typically consist of independent face and voice unimodal recogni-
tion modules that are trained separately, followed a score fusion of
respective scores from unimodal modules. These methods also typi-
cally run in an off-line manner, whereby multiple frames of the face
and several seconds of speech are used to maximize recognition per-
formance; thus, there is an inherent latency embeded in the method-
ologies. On the other hand, feature-level fusion has been uncommon
in the person verification. The feature-level fusion has been more
commonly adoped in audio-visual speech recognition [12, 13] from

a simple concatenation of the feature to end-to-end system [14, 15]
with synchronized audio-visual feature. In this work, we shed light
on the feature level fusion in the multi-modal person recognition.

In this paper, we explore an online audio-visual fusion system
for person verification using face and voice. In contrast to previ-
ous work on person verification, our proposed fusion method is con-
ducted at the feature level. In particular, we focus on the fusion of
synchronized audio-visual data, under the argument that the system
should naturally assess the time-varying contribution of each modal-
ity according to its instantaneous quality at any point in time. Our
method exploits a single video frame of the face and a short span
of speech to facilitate online processing applications, while main-
taining high performance against prior state-of-the-art. Motivated by
the attention [16] and the multi-sensory association mechanism of
human brain [1], our fusion method is implemented by a neural at-
tention mechanism, such that it can learn to evaluate saliency of in-
put modality. Due to the inherent robustness of this architecture, we
expect stable performance even when there is corrupted information
from either face or voice by noise masking or missing information by
pre-processing failures on either modality e.g., face detection, voice
activity detection, etc. We experimentally verify that our proposed
fusion network is indeed robust to corrupted and missing informa-
tion from one modality. We also analyze the output of the attention
layer to see how it behaves under certain characteristics of input.

2. ONLINE PERSON VERIFICATION FROM VIDEO

The verification of a person’s identity (ID) is often achieved by us-
ing information from a single modality that contains the biometric
signal, such as images for face identification and audio for speaker
verification. When multiple modalities are available, such as in video
recordings of someone speaking, then opportunities exist to explore
the fusion of information from both modalities. Both vision and hear-
ing must address challenges due to variation in a persons appearance
or voice, or occlusion caused by environmental conditions. In the
case of vision, the image of a person’s face will appear differently
due to physical changes in a person’s appearance, emotional state,
occlusion due to other objects, and will depend on position and ori-
entation relative to the camera, etc. Likewise, a person’s voice can
change due to health, or emotional state, and will be affected by en-
vironmental noise, reverberation, and channel conditions.

One interesting difference between face and speaker ID tech-
nologies is that high-quality face ID can be obtained from a single
image of a person’s face. In video data, this corresponds to a sin-
gle instance in time, and can be sampled many times a second. In
contrast, to achieve the same level of performance for speaker ver-
ification tasks typically requires a much longer sample of speech
from the talker (e.g., 10-30sec of speech are typical conditions,

3995978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Fusion layer

[ev	, ef ]

Contrastive loss

Concatenating
embeddings

ev ef
(a) System A

ev ef

Contrastive loss

+
e"v e"f

(b) System B

ev ef

Contrastive loss

+

e"v e"f

× ×

[ev	, ef ]

αv αf

(c) System C

Fig. 1: Neural network based fusion approaches. ev: speaker embedding, ef : face embedding

with a few seconds of speech being a much more challenging task).
This discrepancy is because, unlike face images, the speech signal
is highly time-varying due to the nature of communication produc-
tion. A random snippet of speech can be dramatically different from
another, even when spoken by the same talker due to differences
in the acoustic-phonetic sequences presented in samples. The char-
acteristics of a talker’s voice are more reliably extracted when the
duration of a speech recording contains more examples of the dif-
ferent sounds produced by the talker. For person verification, there
is some truth to the mantra that a picture is worth a thousand words!

When processing video data, there will be situations where one
modality or the other may be corrupted or altogether missing. A cor-
rupted modality can be caused by a false alarm of a pre-processing
step such as face detection or voice activity detection (VAD). For
example, a face detector may incorrectly miss a face, or detect the
wrong face or region in the video, or the VAD might be activated
by background noise that does not contain a human voice. These
corrupted inputs could easily confound a multi-modal network, so
that its performance could be worse than fusing separate unimodal
systems. When one modality is completely missing, one easiest so-
lution in practice would be to switch to apply an alternative backup
unimodal system to the uncontaminated modal data. We demonstrate
that our multi-modal system performs favorably against this system-
atic approach even in the complete missing case.

3. AUDIO-VISUAL MULTI-MODAL FUSION

In this section, we describe the proposed multi-modal fusion ap-
proach and its voice and face representation subsystems. Our method
is distinguished from previous studies by its use of a feature-level
fusion approach based on neural network models. Given discrimi-
native face and speaker representations extracted from each subsys-
tem, our attention layer evaluates each contribution of the respective
representations. Then, we combine them according to the estimated
contributions, so that joint representation is obtained. We learn this
whole fusion network for the person verification task without ad-
ditional supervision for the attention. In the test phase, we compute
the similarity of joint representations between the query (enrollment)
and test samples to verify identities.

In the following sections, we elaborate the proposed fusion ap-
proach and the speech and face sub-systems used in our experiment.

3.1. Proposed Fusion Approach

We develop a multi-modal attention model that can pay attention to
the salient modality of inputs, while producing a powerful fusion

representation appropriate for the person verification task. The hu-
mans’ multi-sensory capability inspires this. Among diverse facets
of the human multi-sensory system, the presence of the selective
attention [16] allows humans to first pick salient information even
from crowded sensory inputs. The human attention mechanism dy-
namically brings salient features to the forefront as needed without
collapsing holistic information into blurry abstraction.

The realization of this attention mechanism in deep neural net-
works has achieved successes in various machine learning applica-
tions. Our attention network is similar to the soft attention [17] which
is differentiable. While most previous work applies spatial or tem-
poral attention, e.g., [18], our attention is extended to be attentive
across the modality axis. Given face and speaker embeddings, ef

and ev , we define the attention score â{f,v} through the attention
layer fatt(·) as

â{f,v} = fatt([ef , ev]) = W> [ef , ev] + b, (1)

where W ∈ Rm×d and b ∈ Rm are the learnable parameters of the
attention layer, m and d denote the number of modality to fuse and
the input dimension of the attention layer respectively, and ef and ev

will be discussed in the next subsection. Then, the fused embedding
z is constructed by the weighted sum as

z =
∑

i∈{f,v}

αiẽi, where αi =
exp(âi)∑

k∈{f,v} exp(âk)
, i ∈ {f, v},

(2)
where ẽ denotes the projected embeddings to a co-embedding space
compatible with the linear combination. To map ẽ{f,v} from e{f,v},
we used a Fully Connected (FC) layer with 600 hidden nodes, i.e.
ẽ ∈ R600. We do not used non-linearity in the FC layer. We train the
attention networks by the contrastive loss on the joint embedding
z ∈ R600. For each training step, we used 60 positive and negative
pairs, a total of 120 pairs for each mini-batch, and all pairs were
sampled from the VoxCeleb2 development set.

The proposed attention networks allow us to naturally deal with
corruption or missing data from either modality. In our framework,
the attention networks spontaneously learn to assess the quality of
given multi-modal data implicitly. For example, if the audio signal is
largely corrupted by surrounding noise, the attention network would
switch off the voice representation path and would only rely on the
face representation, and vice versa. In this way, as long as at least one
modality provides appropriate information for the task, this model is
able to perform the person verification.
Relationship with Other Fusion Methods In the context of the
multi-modal person verification, the traditional score-level fusion by
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the logistic regression has been investigated up to these days [6, 7,
8, 9, 10, 11]. These score fusion methods do not leverage any large
capacity deep neural networks which are capable of dealing with
non-trivial fusion strategy. One can come up with a simple exten-
sion based on the above approaches, where FC layers are stacked on
top of the concatenated speaker and face embeddings, ev and ef ,
as shown in Figure 1-(a), i.e. System A. We used 2 FC layers with
1,200 and 600 hidden nodes and ReLUs for non-linearities in the
first FC layer. This can be regarded as a feature level fusion similar
to Nagrani et al. [3]. A downside of this would be the fact that the
performance of the system is degraded by corrupted modal data.

Another neural network based fusion can be accomplished as
shown in Figure 1-(b). FC layers are stacked on top of respective em-
beddings, ev and ef , without any nonlinear activation function. This
layer simply projects each modality embedding onto a joint audio-
visual subspace. Then, the projected embeddings, ẽv and ẽf , are
combined by the summation operation, and used for the contrastive
loss function as we did. The summation based ensemble considers
both modalities contribute equally, typically yielding a mean repre-
sentation which can be easily biased with a large contamination [19].

Our method adaptively estimates the weights of each modal em-
bedding to construct a joint representation. Either of weights can
be turned off if the embedding would degrade the end performance.
This feature is not only robust but also able to deal with missing or
a large corruption of the data.

3.2. Voice and Face Representations

To obtain discriminative embeddings for face and voice, ef and ev ,
we exploit the existing deep neural network based representations.

Voice embedding Voice embeddings generally exploit a large
dataset including augmented data with background noise. A voice
embedding can be extracted from one of the hidden layers from a
neural network trained to classify N speakers in the training dataset.
In a previous study, we proposed a frame-level voice embedding to
extract robust speaker information by modifying a pretrained DNN
structure [20]. For training, the VoxCeleb1 development dataset was
used. Details can be found in [20] since we used the same system.
Frame-level voice embeddings are extracted every 10ms using a
25ms frame window. Before fusion, a total of 10 and 100 successive
voice embeddings are average-pooled across temporal axis to create
a voice embedding which spans 115ms and 1015ms, respectively
since a single frame-level voice embedding spanning 25ms is too
short to extract voice characteristics reliably.

Face embedding Our face embeddings are extracted by using
FaceNet [21] pre-trained on CASIA-WebFace.1 Since the provided
face region annotations in the VoxCeleb datasets are coarse, we
re-align and crop faces by the face and landmark detectors in Dlib.2

4. EXPERIMENTS

In this section, we evaluate the proposed method with various base-
lines on the evaluation setup described in Sec. 4.1. In Sec. 4.2,
we compare our person verification performance with several mul-
timodal fusion approaches as well as unimodal methods in the

1https://github.com/davidsandberg/facenet
We used this reproduced open model, which has been improved by the main-
tainers with several modifications. The modifications include the dimension
change of the last layer from 128-D to 512-D. We use the last 512-D FC7
layer activation of this FaceNet version as the face embedding.

2http://dlib.net

l=0.115 sec l=1.015 sec
Systems EER mDCF EER mDCF
Voice embedding (ev) 41.27 0.999 14.50 0.863
Face embedding (ef ) 8.03 0.631 8.03 0.631
Score-level fusion 7.83 0.623 5.78 0.491
System A 7.74 0.634 5.52 0.478
System B 7.81 0.625 5.56 0.472
System C (Proposed) 7.46 0.611 5.29 0.456

Table 1: Person verification performance on VoxCeleb2 test set. l is
a length of audio segment to extract voice embedding.

ordinary scenario that both modal data is given. Then, we demon-
strate the robustness of the proposed method against corrupted data
in Sec. 4.3. Moreover, we analyze the behavior of the attention layer
according to interpretable attributes, including head pose and facial
appearance traits, in Sec. 4.4.

4.1. Experimental Environment

In our experiments, we used the VoxCeleb1 & 2 datasets [22, 23],
which include multimedia data with a reliable pre-processing step to
obtain face regions and voice segments. VoxCeleb1 & 2 have more
than 1,281,352 utterances from 7,365 speakers and both datasets
have development and test set splits. For verification performance
measurement, we made a test trial set using the VoxCeleb2 Test set
which contains 36,693 video clips from 120 speakers. We made 300
positive trials (i.e., the same speaker from different clips) and 300
negative trials (i.e., different speaker) trials per speaker, for a total of
71,790 trials.3. We used the cosine similarity to measure the similar-
ity of two embeddings.

Voice and face embeddings were extracted in 600 and 512 di-
mensions respectively. For training the fusion networks (A,B, C),
we extracted 1 frame per second and its corresponding audio seg-
ment with 0.115 and 1.015 secs, respectively. Both embeddings were
L2-normalized before feeding into the fusion network. To test, we
extract a single frame and its corresponding audio segment pair ran-
domly in each video clip. Thus, a total of 36,693 still images and
0.115 secs (or 1.015 secs) audio segments are used for the test trials.
Note that such short speech segments have been barely experimented
in speaker verification studies due to its challenging regime. The per-
formance was measured in terms of Equal Error Rate (EER) and
minimum Detection Cost Function (mDCF) (Ptarget = 0.01) [24].

4.2. Fusion Performance

As shown in Table 1, the voice embedding shows significantly worse
performance than the face embedding. This is natural because we
only use 0.115 sec, 1.015 sec which is too short segment to extract re-
liable representations from text-independent speech. The score-level
fusion was done by the logistic regression based calibration [25] on
the VoxCeleb2 development set. The SystemsA,B and C show neu-
ral network-based fusion approaches. While SystemsA and B show
slightly better performance than the score-level fusion on EER, our
System C show a notable gain in both EER and mDCF.

4.3. Effect on Corrupted and Missing Modality

To see the performance under a corrupted or missing modality of ei-
ther voice and face, we generated random noise drawn from a stan-

3The number is slightly less than 72,000 because there are a few individ-
uals who have less than five video clips.
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Voice null embeddings Face null embeddings
Random Zeros Random Zeros

Systems EER mDCF EER mDCF EER mDCF EER mDCF
Score fusion 8.05 0.633 8.03 0.631 49.99 0.999 41.27 0.999

System A 8.51 0.712 7.59 0.648 38.81 0.999 35.51 0.999
System B 8.76 0.748 7.51 0.637 37.74 0.999 34.12 0.999
System C 7.77 0.626 7.50 0.633 37.23 0.999 34.22 0.999(Proposed)

(a) l = 0.115 sec

Voice null embeddings Face null embeddings
Random Zeros Random Zeros

Systems EER mDCF EER mDCF EER mDCF EER mDCF
Score fusion 8.19 0.634 8.03 0.631 28.18 0.995 14.5 0.863

System A 8.64 0.732 7.64 0.649 15.42 0.960 13.27 0.897
System B 8.69 0.724 7.61 0.647 16.52 0.970 14.55 0.901
System C 7.89 0.623 7.65 0.636 12.64 0.905 12.23 0.871(Proposed)

(b) l = 1.015 sec

Table 2: Performance under corrupted and missing modality on ei-
ther voice and face. l is a length of audio segment to extract voice
embedding.

dard normal distribution and a zero vector. Random noise mimics
corrupted embeddings obtained from an image without a face or au-
dio without a voice due to the failure of a pre-processing step. The
zero vector simulates the missing modality case. This could be han-
dled by switching the multi-modal system to unimodal system. How-
ever, we were interested in the scenario where we only used a single
universal system and measured the performance when either modal-
ity did not exist. In Table 2, the proposed system C shows better
performance in both corrupted and missing modality conditions by
assessing the quality of embeddings in the attention layer.

Interestingly, the neural network based fusion systems, particu-
larly the proposed fusion approach, obtain better performance than
the one using a unimodal embedding, even for the case that infor-
mation is only partially available. In the neuroscience study, it has
been observed that unimodal perception benefits from the multisen-
sory association of ecologically valid and sensory redundant stimu-
lus pair [26]. As an extension of this observation, we can interpret
as the fusion network learns the association of the multisensory data,
and it is able to extract robust feature even without multisensory data.

4.4. Analysis of the Attention Layer

We analyze the behavior of the attention layer in our networks. In
order to parse what information it has learned and its behavior ac-
cording to interpretable attributes, we conduct control experiments
with facial appearance attributes.

By measuring the probabilities of face/voice attention weights
conditioned by an attribute in the test set, we investigate the existence
of the statistical correlation between the attribute and the attention,
and its tendency. We obtain the attributes of the VoxCeleb2 test set
by using the state-of-the-art, Rude et al. [27] and Feng et al. [28] for
40 facial appearance attributes (defined in [29]) and 3D head orienta-
tion, respectively. We focus on the relationship between the behavior
of attention weights and attributes, considering the fact that Kim et
al. [5] already showed the connections of face/voice representations
with certain demographic attributes.

As a statistical measure, given an attribute A, we measure the
expectation of the probability EP (αf>ᾱf |A=true), where ᾱf de-

Head orientation |θ|<30° 30°<|θ|<60° 60°<|θ|
V (%) F (%) V (%) F (%) V (%) F (%)

Yaw 43 57 46 54 44 56
Pitch 44 56 41 59 42 58
Roll 44 56 43 57 47 53

(a) Head orientation attributes. (V: voice, F: face)

Facial Attibutes Voice (%) Face (%) 95% C.I.
Bald 74.89 25.11 ± 4.02

Blond Hair 32.17 67.83 ± 1.51
Goatee 70.06 29.94 ± 1.38

Mustache 72.96 27.04 ± 1.73
Sideburns 65.60 34.40 ± 1.81

Straight Hair 29.65 70.35 ± 1.09
Wearing Hat 72.62 27.38 ± 2.14

(b) Facial appearance attributes

Table 3: The expectation of P (αv>ᾱv|A=true) and
P (αf>ᾱf |A=true), where A denotes attributes. C.I. stands
for the (Wald) confidence interval. For head orientation, the front
face is represented by all the angle of yaw, pitch and roll equal to 0°.

notes the global mean of the face attention over all the test data,
and likewise for voice. Since the probability estimate follows the
expectation of the Bernoulli trial, we use 95% binomial proportion
(Wald) confidence interval. While the attribute estimation methods
have low-failure rate profile, due to subtle outlier effects, we conser-
vatively regard 95%-confidence lower bound estimates as significant
signals if greater than 60% (greater than random chance).

From Table 3a, we could not find any correlation between head
orientation and attention weights. We postulate that the FaceNet em-
bedding is learned to be sufficiently head orientation invariant, so the
attention layer turns out to be insensitive to the quality of the embed-
ding according to the orientation. Table 3b shows the 7 attributes of
which lower bounds are above 60%. It is interesting that, in the case
that a person is with the temporary attributes, such as “Wearing Hat,”
“Sideburns,” “Goatee” and “Mustache,” the fusion system is likely
to concentrate on the voice with a much higher chance than random.
We postulate that temporary factors act as a noise, thus the network
relies on the other modality in that case. Also, the strong attributes
like “Bald,” “Blond hair” and “Straight Hair” show correlation with
attention weights.

5. CONCLUSION

Motivated from the recent studies about the multi-modal association,
we proposed a feature-level attentive fusion network for audio-visual
online person verification task. The temporally synced face image
and voice segment assumption encourages the network to learn
about the quality of the embedding to verify a person’s identity. The
learned embeddings of both modalities share a compatible space (co-
embedding space) by virtue of the simple linear combination rule to
obtain the fused representation. Besides the better performance than
the traditional score-level fusion, it has a large advantage to handle
severe conditions such as the presence of the corrupted and missing
modality. The attention mechanism is also analyzed to understand
the correspondence between attention weights and interpretable at-
tributes of visual perception. In addition to visual appearance traits,
it would be interesting to further investigate the attention behavior
in terms of speech characteristics, such as pitch, language, dialect,
as a future direction.
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