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ABSTRACT

The grayscale-thermal tracking has attracted increasing atten-
tion due to the fact that it can make thermal information com-
plement with grayscale information. Since there exists a large
gap between the grayscale and the thermal video sequences,
how to exploit the intrinsic relation between the grayscale and
the thermal targets has become the key point. To address this
issue, in this paper, we propose an inverse sparse representa-
tion based framework for the grayscale-thermal tracking, in
which a canonical correlation analysis based inverse sparse
representation model is adopted to jointly encode the target
candidates in the grayscale and the thermal video sequences.
The target coding process can explore the similarity between
the grayscale and the thermal appearance in a common sub-
space, which can highlight the useful and discriminative in-
formation in both grayscale and thermal targets. The experi-
ments on OSU-CT dataset can illustrate the promising perfor-
mance of our tracking framework.

Index Terms— Grayscale-thermal tracking, Inverse s-
parse representation, Canonical correlation analysis

1. INTRODUCTION

Visual tracking plays a very important role in computer vision
with many applications, such as video analysis, vehicle navi-
gation and human-computer interaction. Although significant
progress has been made recently, it remains very challeng-
ing for visual tracking under bad weather, such as smog and
raining, because the visible spectrum camera can only collect
limited light, causing foreground target and the background
difficult to be discriminated.

With the rapid development of multimedia and internet
of things, thermal infrared camera has become economically
affordable. This kind of camera can capture the thermal in-
frared radiation emitted by subjects with a temperature above
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absolute zero, which is good for night surveillance. Effective-
ly combining visible spectrum camera with thermal infrared
camera has two advantages: 1) Thermal infrared camera is
robust to the illumination changes, which can provide com-
plement to visible spectrum data obtained from poor light
condition. 2) The gray feature in visible spectrum camera
would contribute to solving the crossover problem in ther-
mal infrared camera based object detection. In this context,
the grayscale-thermal tracking is considered as an effective
method to overcome the bad weather challenging in visual
tracking [1, 2].

(a) grayscale image (b) thermal image

Fig. 1. An example of grayscale and thermal video pairs. In
(a), it is difficult to discriminate the target from background.
The grayscale-thermal tracking aims to design the appearance
model to make thermal and grayscale information comple-
ment with each other.

The grayscale and thermal video sequences are obtained
in pairs in grayscale-thermal tracking (see Fig. 1 as example).
Based on the video pairs, designing the appearance model is
a tough work because it not only requires to bridge the image
gap between the grayscale and the thermal video sequences,
but also asks to resist the data bias in the grayscale or thermal
video sequences. Due to the successful application of sparse
representation in multi-view face recognition [3], sparse rep-
resentation has become a useful tool to overcome the limita-
tion in grayscale-thermal tracking. Different from traditional
sparse representation based visual tracking [4], the grayscale-
thermal sparse representation based tracking has to adaptively
fusing the sparse representations of grayscale and thermal ap-
pearance to guarantee that both the grayscale and the thermal
video sequences can give good tracking performance. For
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practical application, Li [2] proposed a collaborative sparse
representation based appearance model for grayscale-thermal
tracking, in which the multi-model fusion and the model re-
liability estimating are integrated into a unified optimization
problem. Since the collaborative sparse representation model
could not explore the similarity between the grayscale and the
thermal video sequences, it may not make sure that the same
target in the grayscale and the thermal image pairs can obtain
similar sparse representation results when facing data bias.
To enhance the tracking performance of [2], Li [5] introduced
target local information in the collaborative sparse represen-
tation model. Since this method could not use background
context to enhance the difference between similar targets, it
may cause tracking drift in background clutter.

Inverse sparse representation is an extension of sparse rep-
resentation, which can be used as a feature coding method to
separate the target from background [6, 7]. Inspired by this
method, we propose an inverse sparse representation based
tracking framework for robust grayscale-thermal tracking, in
which the canonical correlation analysis (CCA) and inverse
sparse representation are firstly integrated into a joint opti-
mization problem to encode the target candidates. Then, the
target candidate codes are put in SVM method for grayscale-
thermal tracking. The advantages of joint optimization based
observation coding are two-folds: 1) The discriminative in-
formation of targets in both grayscale and thermal images can
be highlighted through using CCA to explore the target sim-
ilarity between grayscale and the thermal video sequences.
2) Due to the robustness of inverse sparse representation, the
observation codes are robust to the data bias. To enhance the
tracking speed, we also propose an alternating reconstruction
method to solve the joint optimization problem.

2. TRADITIONAL INVERSE SPARSE
REPRESENTATION

In traditional sparse representation based visual tracking, s-
parse representation aims to use an dictionary to sparsely
represent the target candidates. Different from sparse repre-
sentation method, inverse sparse representation is aimed to
use target candidates to sparsely represent the target dictio-
nary. Since the target dictionary is composed of the target and
the background templates, using target candidates to inverse-
ly represent the target dictionary can indicate the similarity
of target candidates to target templates and background tem-
plates. In this way, the inverse sparse representation can use
both the target and the background information to yield the
discriminative codes to represent the target candidates. The
inverse sparse representation model is described as

min
U

∥U∥1 + ∥D − YU∥2F , (1)

where D = [DP ,DN ] is the target dictionary with DP and DN

are the positive and negative temple sub-matrix (the target and
the background templates). Y denotes the target candidate

matrix and U is the corresponding inverse sparse represen-
tation result. If the target is not occluded severely, equation
(1) can use U to accurately encode target candidates in Y.
However, if the target is completely occluded or in the bad il-
lumination scenario, equation (1) could not extract the useful
information in target candidates to guarantee the sparsity in
U.

The grayscale-thermal tracking is aimed to use grayscale
and thermal information to complement with each other. S-
ince equation (1) only achieves target feature coding for a s-
ingle kind of video sequence, it could not be directly used in
grayscale-thermal tracking.

3. CANONICAL CORRELATION ANALYSIS BASED
INVERSE SPARSE REPRESENTATION

3.1. Proposed inverse sparse coding model

In this paper, we propose a canonical correlation analysis
based inverse sparse representation model to encode the tar-
get candidates. The proposed model is shown as that

min
U,P

2∑
i=1

∥PT
i Di−PT

i YiUi∥2F+λ1∥U∥2,1−λ2Tr(PT
1 Y1YT

2 P2),

(2)
where Di (i = 1, 2) means the target dictionaries obtained
from the thermal and thegrayscale video sequences, respec-
tively. Yi (i = 1, 2) denotes the target candidate matrices for
the thermal and the grayscale video sequences, respectively.
U = [U1,U2] is the inverse sparse representation matric for
the target candidate matrices Y1 and Y2. Pi(i = 1, 2) denotes
the projection matrices, which is updated through minimizing
−Tr(PT

1 Y1YT
2 P2).

In computer vision, the same target can be represented by
different features, such as texture, edges and so on. There
exist not only the potential similarity but also a large gap be-
tween different kinds of target features. Canonical Correla-
tion Analysis (CCA) [8] aims to exploit the intrinsic feature
similarity to train the projection matrices for projecting dif-
ferent target features into a common subspace, in which the
common and useful information of different target features
can be maximized. Inspired by CCA, we integrate projec-
tion matrices updating and the inverse sparse representation
into a unified optimization model, in this way, we can use
PT
i Yi to enforce the target similarity between the grayscale

and the thermal video sequences, which can highlight the use-
ful information and minimize the data bias in both Y1 and
Y2. Based on the advantage of PT

i Yi, equation (2) can make
sure to yield robust codes for the target candidates in both
grayscale and the thermal video sequences.

3.2. Reconstruction method

Equation (2) is a non-smooth optimization problem. To
solve this problem, we propose an alternating reconstruction
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Fig. 2. The proposed tracking framework for grayscale and thermal video pairs

method, in which each iteration is divided into two steps,
termed as the P and the U steps.

In P step, U is fixed, the projection matrices P1 and P2 are
updated by solving the following sub-optimization problem

min
P1,P2

2∑
i=1

∥PT
i Di − PT

i YiUi∥2F − λ2Tr(PT
1 Y1YT

2 P2). (3)

Based on the property of Frobenius norm, problem (3) can
be rewritten as

min
P1,P2

2∑
i=1

Tr(PT
i QiQ

T
i Pi)− Tr(λ2PT

1 Y1YT
2 P2) (4)

where Qi = Di−YiUi. Using P = [PT
1 ,PT

2 ]
T to reformulate

problem (4), it can be simplified as

min
P

Tr(PT AP) (5)

where A =

[
Q1QT

1 −Y1YT
2

0 Q2QT
2

]
, with 0 being the zero ma-

trix. Setting the first order derivative of problem (5) to zero,
we can update the projection matrix P through singular value
decomposition.

In U step, P is fixed, and U = [U1,U2] is updated through
solving the following optimization problem

min
U

2∑
i=1

∥PT
i Di − PT

i YiUi∥2F + λ1∥U∥2,1 (6)

In (6), we set Φ(U) =
∑2

i=1 ∥PT
i Di − PT

i YiUi∥2F , Ψ(U) =
∥U∥2,1. Applying composite gradient mapping [9] to Φ(U)
and Ψ(U), we can obtain

Uk+1 =min
U

Φ(Vk)+ < ∇Φ(Vk),U >

+
1

2η
∥U − Vk∥2F + λ1Ψ(U)

(7)

where η is the step size parameter. Inspired by [10], the solu-
tion of (7) is given by

Uk+1/2 = Vk − η∇Φ(Vk) (8)

where [∇Φ(Vk)]i = −(PT
i Yi)

T (PT
i Di−PT

i YiUi) (i = 1, 2)
Based on (8), U is finally updated by

[Uk+1](j, :) =

[
1− λ1η

∥[Uk+1/2](j, :)∥2

]
+

[Uk+1/2](j, :) (9)

where [Uk+1](j, :) represents the j-th row in matrix Uk+1 and
[·]+ is the scalar operator. Assuming there exist a scalar a, it
is defined that [a]+ = max{0, a}.

4. INVERSE SPARSE REPRESENTATION BASED
TRACKING FRAMEWORK

In this section, we will illustrate how to use the correlation
analysis based inverse sparse representation model to achieve
visual tracking. The online tracking framework is shown in
Fig.2.

At time t, we firstly adopt particle filter [11] to yield the
target candidate matrices Y1 and Y2. Then we use the pro-
posed inverse sparse representation model (equation (2)) to
jointly estimate the target candidate codes U1 and U2 for Y1

and Y2. Since U1 and U2 are estimated through exploring
the similarity between the grayscale and the thermal video
sequences, putting them into SVM can make it easy to dis-
criminate the best target from the target candidates in both
the grayscale and the thermal video sequences. To avoid mis-
coding, the target dictionaries Di (i = 1, 2) are online up-
dated in a manner similar to [6]. Inspired by [12], the SVM
is pre-trained by using the positive and negative sample codes
(the positive and negative training samples are encoded by the
proposed inverse sparse representation model) in the first 10
frames, and SVM is online updated at every 50 frames.

5. EXPERIMENTS

OSU-CT is a public dataset [13] for testing the grayscale-
thermal tracking performance, in which it contains 9 video
pairs with challenging factors such as: bad illumination,
occlusion etc. Here we use this dataset to carry out the
experiments. We compare the proposed method with 7 state-
of-the-art methods, namely L1-tracker [4], SCM [14], Struck
[15], CN [16], DSSM [7], L1-PF [17] and GTOT [5]. In
those methods, L1-tracker, SCM, Struck, CN and DSSM
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Fig. 4. Qualitative tracking performance with different tracking methods. The first row is the grayscale video sequences, and
the second row is the thermal video sequences
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Fig. 3. Precision and success rate performance over different
tracking methods on grayscale video sequences. (a) precision
plot, (b) success plot.

are grayscale tracking methods, and L1-PF and GTOT are
grayscale-thermal tracking methods.

Experiment setting: In our experiments, the target dictio-
naries are set as Di ∈ R256×300(i = 1, 2), in which the num-
ber of target templates is 300 (200 for foreground templates
and 100 for background templates). The number of target
candidates in each frame is 600. The parameters in the recon-
struction method are empirically set as η = 0.01, λ1 = 0.1
and λ2 = 1.

In the experiments, we firstly give the quantitative evalu-
ation of 6 tracking methods (see Fig. 3). SCM, Struck, CN,
l1-tracker and DSSM are well-known grayscale based track-
ing methods in which they only use grayscale information to
carry out visual tracking. By comparison, our method us-
es grayscale-thermal video pairs to carry out visual tracking.
This experiment aims to test whether the grayscale-thermal
method can enhance the grayscale tracking performance with
the help of thermal information in the challenging video se-
quences. The quantitative measurements used for this test in-
clude the precision plot and the success plot [2]. These two
measurements are often used to evaluate the overall tracking
performance. From Fig. 3 we can clearly see that our method
can give the best tracking performance in the precision and
success plots.

Next, we quantitatively compare our method with the
well-known grayscale-thermal tracking methods (see Table
1). In this test we use overlap rate as the objective measure-

ment, which is defined as area(BT∩BG)
area(BT∪BG) , where BT and BG

are the tracked bounding box of each frame and the corre-
sponding ground truth, respectively. From Table 1 we can
clearly see that the average overlap rate of out method in
grayscale and thermal video sequences are 0.60 and 0.61,
respectively, which is almost 8% higher than GTOT method.

Table 1. Average overlapping rate performance over different
grayscale-thermal trackers. The best results are denoted as red

grayscale performance thermal performance
video pairs L1-PF GTOT Our L1-PF GTOT Our

Hover 0.42 0.59 0.65 0.31 0.51 0.57
WalkingOcc1 0.36 0.23 0.52 0.42 0.23 0.45
WalkingOcc2 0.50 0.76 0.78 0.34 0.62 0.65

WalkingScale2 0.52 0.52 0.64 0.68 0.52 0.63
LightOcc 0.42 0.43 0.62 0.57 0.43 0.62
Shadow 0.62 0.63 0.52 0.60 0.53 0.58

FastWalk2 0.37 0.38 0.60 0.63 0.39 0.78
Walkingnight 0.45 0.49 0.53 0.53 0.47 0.66

Talking 0.37 0.66 0.60 0.49 0.64 0.57

Average 0.45 0.52 0.60 0.51 0.48 0.61

Finally, we randomly select two video pairs as example to
illustrate the qualitative tracking performance of our method.
From Fig. 4 we can clearly see that our method and GTOT
can give a better tracking performance than other methods
because they can effectively use the thermal information to
enhance the robustness of visual tracking in grayscale video
sequences.

6. CONCLUSION

In this paper, we have proposed an inverse sparse representa-
tion based tracking framework. This framework has benefited
from the use of a correlation analysis based inverse sparse
representation model that can jointly encode the target candi-
dates in the graysecale and thermal video sequences. It has
been shown through experiments that the proposed tracking
framework can give a superior performance in challenging
video sequences.
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