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ABSTRACT

Image-text matching has received a large amount of interest
since it associates different modalities and improves the un-
derstanding of image and natural language. It aims to retrieval
semantic related images based on the given text query, and
vice versa. Existing approaches have achieved much progress
by projecting the image and text into a common space where
data with different semantics can be distinguished. How-
ever, they process all the data points uniformly, while ne-
glecting that data in a neighborhood are harder to distinguish
due to their visual similarity or syntactic structural similar-
ity. To address this issue, we propose a neighbor-aware net-
work to image-text matching where an intra-attention module
and neighbor-aware ranking loss are proposed to jointly dis-
tinguish data with different semantics, more importantly, se-
mantic unrelated data in a neighborhood can be distinguished.
The intra-attention attends to discriminative parts by compar-
ing data with different semantics and magnifying difference
between them, especially subtle difference between data in
a neighborhood. The neighbor-aware ranking loss function
utilizes the magnified difference to explicitly and effectively
discriminate data in a neighborhood. We conduct extensive
experiments on several benchmarks and show that the pro-
posed approach significantly outperforms the state-of-the-art.

Index Terms— Image-text matching.

1. INTRODUCTION

Image-text matching has recently attracted much attention in
computer vision, which aims to retrieval semantic related im-
ages based on the given text query, and vice versa. It asso-
ciates different modalities and improves the understanding of
image and natural language. Images with their correspond-
ing detailed textual descriptions are considered as matched,
otherwise mismatched.

Existing approaches can be roughly categorized into
many-to-many approaches and one-to-one approaches. Many-
to-many approaches[1–6] learn latent alignment between ob-
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Fig. 1. The above images are visually similar, while the first
two images share the same semantic and the third not. In prior
works, representation of the first image is closer to the third
instead of the second one. The same problem exists in text
side, which causes similar semantics being indistinguishable
in the common space. Our work modifies that based on intra-
attention and distinguish them using neighbor-aware loss.

jects in the image and words in the text, which requires exter-
nal object detection tools pre-trained on large-scale datasets.
One-to-one approaches [7–17] learn the correspondence be-
tween the whole image and text without external object detec-
tion tools. In this work we focus on one-to-one approach. Ex-
isting one-to-one approaches typically project the image and
text into a latent common space where semantic relationships
between different modalities can be measured through dis-
tance computation. Previous works employ multiple neural
network to improve feature representations such that seman-
tic related data are close to each other, otherwise not, such as
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Fig. 2. Our approach mainly consists of intra-attention mod-
ule and neghbor-aware ranking loss. The intra-attention takes
features as input and learns to attend on discriminative parts.
The neighbor-aware ranking loss utilizes the attended features
to explicitly discriminate neighbors with different semantics.

multimodal convolutional neural networks (m-CNNs) [15],
multimodal Recurrent Neural Network (m-RNN) [16], recur-
rent residual fusion (RRF) [17] and so on. Some others focus
on optimization[8, 9, 17, 18]. For example, [8, 9] apply a
ranking loss that forces semantic related images to be ranked
higher than semantic unrelated images for each text query, so
it is when given an image query. Among these works, all the
data are processed uniformly whether they are neighbors.

However, data in a neighborhood are harder to distinguish
which is neglected by existing approaches. It mainly arises
from that data in a neighborhood are similar in content-level
(e.g. visual appearance similar for the image and syntactic
structure similar for the text) instead of semantic-level, which
leads to content similar but semantic different data points be-
coming neighbors. As shown in Fig 1, the above three images
are visually similar, while the first two images are seman-
tic related and the third one is semantic unrelated to them.
As a result, the representation of the first image is closer to
the third instead of the second, which causes their semantics
being indistinguishable and inferior matching results. There-
fore, more focus is required to data in a neighborhood to learn
more discriminative features since they only differ in subtly
parts, which facilitates to distinguish data with different se-
mantics more effectively, see the right of Fig 1.

To address this issue, we propose a neighbor-aware
network that consists of an intra-attention module and a
neighbor-aware ranking loss to jointly learn more discrimi-
native features. It enables to discriminate data with different
semantics, more importantly, semantic unrelated data in a
neighborhood can be distinguished that ensures accurate
image-text matching. The intra-attention is applied to learn
image and text representations respectively by comparing
each data and its semantic unrelated neighbors in detail and
then magnifies their subtle difference. The neighbor-aware

ranking loss emphasizes on neighbors and explicitly dis-
tinguish them using the magnified difference. We conduct
extensive experiments on several benchmarks, showing that
the proposed approach outperforms the state-of-the-art.

The main contributions of our work are listed as follows:
1. We introduce a neighbor-aware network that employs

an intra-attention module to magnify difference between data
with different semantics, especially data in a neighborhood.

2. We propose a neighbor-aware ranking loss function that
explicitly distinguishes neighbors with different semantics.

3. Extensive experiments on benchmarks show that the
proposed method significantly outperforms the state-of-the-
art for image-text matching.

2. APPROACH

The architecture of neighbor-aware network is illustrated in
Fig.2, it mainly consists of an intra-attention module and
a neighbor-aware ranking loss that jointly learn the differ-
ence between data with different semantics, which will be
discussed in section 2.1 and 2.2, respectively.

2.1. Architecture

We first extract image features using pre-trained CNN and
text features using fisher vector following [9, 17, 19], denoted
as vi ∈ R1×N , and ti ∈ R1×M . We then generate feature
map after a fully connected layer. The intra-attention module
is build on the feature map. Here, we briefly introduce this
module in the image branch, text branch is similar to it.

The intra-attention module is designed to assign different
importance to different features using global information as
a reference. We first generate attention mask by performing
MLP (Multilayer Perceptron) on the acquired feature map hi

xi = f(Wihi + bi) (1)

where Wi and bi are parameters to be learned, f(·) denotes
multiple nonlinearity transformations including fully con-
nected layers and ReLU activation. xi is the attention mask
for i-th image, which represents the relative importance of
each feature. The final attention mask value ai can be ob-
tained by normalizing this mask into [0,1]

ai =
exi∑N

k=1 e
xk

(2)

Then, the feature map is reweighted by element-wise
product of the feature map and attention mask, which obtains
the reweighted feature map hatteni , that is

hatteni = ai � hi. (3)

Different from conventional approaches, we do not feed
the attended map into the next layer directly. Attended fea-
ture map is fused with previous feature map by concatenation,
which decreases information loss since there might exist bias
in attention mask. The fused feature [hi;h

atten
i ] is fed into
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Table 1. Matchinig results on Flickr8K, the bests are in bold.

Method
Flickr8K

Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

m-CNN [15] 24.8 53.7 67.1 20.3 47.6 61.7
m-RNN [16] 14.5 37.2 48.5 11.5 31.0 42.4

HM-LSTM [1] 27.7 - 68.6 24.4 - 68.1
DSPE [8] 30.1 60.4 73.7 23.0 51.3 64.8

Ours 37.2 68.1 79.1 27.7 59.6 71.8

a fully connected layer followed by L2 normalization. The
distance between image and text in the common space can be
computed as d(x̂i, ŷi) using Euclidean distance, where x̂i and
ŷi are image and text representations, respectively.

2.2. Neighbor-aware ranking loss

Different from existing ranking loss [8, 9] applied in previous
works, our approach pays more attention to neighbors that
belong to different semantics, which will be more effective to
distinguish different semantics. It consists of an inter-modal
and intra-modal neighbor-aware ranking loss, where one con-
trols the semantic relations between different modalities and
another one controls that in the same modality. They will be
presented in section 2.1.1 and section 2.2.2.

2.2.1. Inter-modal neighbor-aware ranking loss

Definition: given a data x, its semantic unrelated neighbors
are a set of data points whose features are close to the feature
of x, its semantic related neighbors are ground truth.

Given a training i-th image, we first extract its feature as
vi. Next, we sample a semantic related image and extract its
feature vj . Then, we sample another k-th semantic unrelated
image whose feature is vk, and calculate the difference of dis-
tance between them to vi, namely

nijk = d (vi, vk)− d (vi, vj) (4)
We then effectively pushing semantic unrelated data away

through treating neighbors and non-neighbors separately,
which is determined by nijk value. If it is smaller than a
threshold α, k-th image is treated as a semantic unrelated
neighbor of i-th image based on our definition. We enlarge
distance between i-th and k-th image, forcing it to be larger
than that between i-th and j-th image by a fixed margin n.

L1 =
∑
i,j,k

max [0, d (x̂i, x̂j)− d (x̂i, x̂k) + n] (5)

where x̂i, x̂j , and x̂k are representations of the given image,
its semantic related and unrelated neighbor in common space.

If nijk is larger than α, it indicates k-th image is a non-
neighbor. We relax its constraint by setting the margin as
nijk, then previous loss L1 becomes

L1 =
∑
i,j,k

max [0, d (x̂i, x̂j)− d (x̂i, x̂k) + nijk] (6)

Table 2. Matching results on Flickr30K, the bests are in bold.

Method
Flickr30K

Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

m-CNN [15] 33.6 64.1 74.9 26.2 56.3 69.6
m-RNN [16] 35.4 63.8 73.7 22.8 50.7 63.1

HM-LSTM [1] 38.1 - 76.5 27.7 - 68.8
DSPE [8] 40.3 68.9 79.9 29.7 60.1 72.1

VSE++ [11] 43.7 - 82.1 32.3 - 72.1
RRF [17] 47.6 77.4 87.1 35.4 68.3 79.9

CMPM + CMPC [10] 49.6 76.8 86.1 37.3 65.7 75.5
Ours 55.1 80.3 89.6 39.4 68.8 79.9

Note that the weight of loss for non-neighbors is lower than
that for neighbors. When given a training text, it is analogous
to L1. The inter-modal neighbor-aware ranking loss is the
combination of restraints on both image and text side.

2.2.2. Intra-modal neighbor-aware ranking loss

Given a training image, we obtain its representation x̂i in the
common space. Let ŷj and ŷk denote the representation of
one of its semantic related texts and semantic unrelated texts.
We enforce the distance from x̂i to ŷj to be smaller than that
to ŷk by a margin m (m >= n). When given a training text,
it is similar to that. The overall intra-modal loss is

L2 =
∑
i,j,k

max [0, d (x̂i, ŷj)− d (x̂i, ŷk) +m]

+
∑
i,j,k

max [0, d (ŷi, x̂j)− d (ŷi, x̂k) +m]
(7)

Note that we emphasis on neighbors by computing this
loss of each training data and selecting top 10 to minimize
since neighbors are more likely to produce high loss while
training. The overall loss function is a weighted combination
of inta-modal and inter-modal neighbor-aware ranking loss,
where the weight λ is a trade-off.

3. EXPERIMENT

3.1. Experimental setup

Datasets. We evaluate our approach on Flickr8K [20],
Flickr30K [21] and MSCOCO [22] for image-to-text and
text-to-image matching tasks. For Flickr8K, we employ the
standard split that 6k, 1k, 1k images are used for training,
validation, and testing. Each image corresponds to five texts.
For Flickr30K, we split the benchmark into 29k training im-
ages, 1024 validation images and 1k test images following
[3, 16, 17]. For MSCOCO, it consists of 83k training images
and 41k validation images, we choose 1000 images from
training and validation sets for testing following [8, 9]. Five
corresponding texts are selected for each image.
Evaluation. We adopt the widely used Recall@K (K =
1,5,10) as evaluation, it is the percentage of queries for which
at least one correct result is retrieved among top K results.
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Table 3. Ablation study on Flickr8K, Flickr30K and MSCOCO benchmarks, the best results are in bold.

Method
Flickr8K Flickr30K MSCOCO

Image-to-Text Text-to-Image Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VGG + Att 31.2 62.7 73.7 23.2 52.5 65.4 42.8 72.6 82.5 31.3 61.7 72.5 52.1 83.1 91.3 41.0 74.9 86.9
VGG + Loss 31.8 60.8 75.2 23.7 52.4 65.9 44.0 71.9 82.3 31.2 61.7 73.0 53.3 82.0 91.4 42.0 76.0 86.9

VGG + Att + Loss 31.9 62.8 75.8 23.7 52.7 66.0 43.3 74.8 83.0 31.6 61.9 73.7 54.3 83.2 92.4 41.2 75.8 87.2
RES + Att + Loss 37.2 68.1 79.1 27.7 59.6 71.8 55.1 80.3 89.6 39.4 68.8 79.9 61.3 87.9 95.4 47.0 80.8 90.1

Table 4. Matching results on MSCOCO, the bests are in bold.

Method
MSCOCO

Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

m-CNN [15] 42.8 73.1 84.1 32.6 68.6 82.8
m-RNN [16] 41.0 73.0 83.5 29.0 42.2 77.0

HM-LSTM [1] 43.9 - 87.8 36.1 - 86.7
DSPE [8] 50.1 79.7 89.2 39.6 75.2 86.9

VSE++ [11] 58.3 - 93.3 43.6 - 87.8
RRF [17] 56.4 85.3 91.5 43.9 78.1 88.6

CMPM + CMPC [10] 56.1 86.3 92.9 44.6 78.8 89.0
Ours 61.3 87.9 95.4 47.0 80.8 90.1

Settings. We make comparisons with most representative
approaches, where [17] and [8] are the most close works to
our approach, [10, 11] are most recent works. Others [1, 15,
16] are benchmarks. We implement the proposed approach
in Tensorflow [23], we train the network using Adam opti-
mization, and the mini-batch size is 1500, the learning rate
is 0.0001 without decay. The representations in the common
space are set to be 512. We also employ dropout with proba-
bility 0.5 to avoid overfitting.
Feature extraction. To get visual features, we extract 4096
and 2048 dimensional activations from pre-trained VG-
GNet19 [24] and ResNet [25] model respectively. To get
textual features, we exploit the unsupervised Fisher Vector
(FV) approach [26] to extract 6000-dimensional features.

3.2. Experimental results

Comparison with the state-of-the-art. We compare our ap-
proach with the state-of-the-art on benchmarks. As shown in
Table 1,2,4, our approach marginally outperforms the state-
of-the-art on all the benchmarks, which indicates the effec-
tiveness of our approach. It is observed that our method gen-
erally achieves more improvement on R@1 than R@10 since
semantic unrelated neighbors are pushed away, which benefits
to retrieve correct results accurately. It validates the effective-
ness of our method in distinguishing data in a neighborhood.
Ablation study. To systematically evaluate the effective-
ness of different components, ablation studies are designed as
shown in Table 3. Components include: 1) VGG / RES: refers
to extract image features using VGGNet or ResNet. 2) Att:
represents the proposed intra-attention module. 3) Loss: the
proposed neighbor-aware ranking loss. From the table we can
obtain the conclusion that either employing the intra-attention
or neighbor-aware loss can improve the performance com-

pared with baselines, integrating them can further improve
it, which indicate they complement each other. Despite that
there is a slight drop when combing the attention module
and loss function, the overall performance improves. Note
that using ResNet as feature extraction achieves significant
improvement since it reserves more semantic information.
Qualitative results. In Fig.3, we offer visualizations on text-
to-image matching using our model and DSPE, which is the
closest to our work. We retrieve top 1 image for each text
query. The four columns correspond text query, DSPE results,
our approach results, and ground truth, respectively. It is ob-
served that almost all the incorrect results in this figure are
visually similar to the ground truth, which indicates data in
a neighborhood that are with different semantics will to some
extent impact matching result, and our proposed approach can
address this issue by learning more discriminative features.

Query DSPE Our approach Ground Truth

Man standing on railing
looking down at two giraffes.

A person standing on a
steep side walk next

to a building.

A small two toned blue
airplane flying.

Fig. 3. Qualitative results for text-to-image on MSCOCO.

4. CONCLUSION

In this work, we propose a neighbor-aware network to distin-
guish different semantic data, especially data in a neighbor-
hood. It employs intra-attention to magnify the subtle differ-
ence between neighbors, which is utilized by the neighbor-
aware ranking loss to further increase the distance between
neighbors that are with different semantics. Experimental re-
sults show that the proposed approach will significantly im-
prove the image-text matching performance.
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