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ABSTRACT

Despite the recent success of multi-modal action recognition
in videos, in reality, we usually confront the situation that
some data are not available beforehand, especially for multi-
modal data. For example, while vision and audio data are
required to address the multi-modal action recognition, audio
tracks in videos are easily lost due to the broken files or the
limitation of devices. To cope with this sound-missing prob-
lem, we present an approach to simulating deep audio feature
from merely spatial-temporal vision data. We demonstrate
that adding the simulating sound feature can significantly as-
sist the multi-modal action recognition task. Evaluating our
method on the Moments in Time (MIT) Dataset , we show
that our proposed method performs favorably against the two-
stream architecture, enabling a richer understanding of multi-
modal action recognition in video.

Index Terms— missing modality problem, action recog-
nition, audio feature simulation, neural network, deep learn-
ing

1. INTRODUCTION

Thousands of activities accompanied with different sounds
are occurring around us in our daily life. Recently, multi-
modal action recognition in videos has been intensively in-
vestigated due to its wide applications [1, 2, 3, 4, 5]. In
some situations, certain actions share similar visual appear-
ances and are difficult to be discriminated. However, with
the help of multi-modal data, we can understand the action in
videos more comprehensively. As shown in Fig.1, for exam-
ple, (a) shows that marchers parade on the avenue while (b)
shows that audiences watch the baseball game, and they share
the similar scene - crowded people. With the help of sound,
we can easily tell the difference between parade and baseball
game. Same situation for (c) and (d), the sounds of howling
and barking are completely different though they have similar
scene. Although we can benefit the action recognition from
multi-modal data, in reality, we usually confront the situation
that some modalities of data are not accessible beforehand.
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(c) barking dog (d) howling dog

Fig. 1. Confusing scene. In multi-modal action recognition
task, some actions share similar visual appearances. Obvi-
ously, we can tell the difference between the similar appear-
ances with the help of sound. However, in reality, we usually
confront the Missing Modality Problem - especially sound is
not available. (eg. roughly 44% videos in MIT dataset are
soundless.)

For example, audio tracks in videos are frequently lost due to
the broken files or the limitation of devices. We define such
situation as Missing Modality Problem. Besides, according to
our statistics, roughly 44% videos in Moments in Time (MIT)
dataset|6] are soundless.

Solutions to multi-modal recognition often utilize the
knowledge from various modality and mutually aid each
other. Aytar et al. [7] proposed a network producing a deep
aligned representation among text, sound and image. Si-
monyan et al. [4] proposed a two-stream ConvNet architec-
ture incorporating spatial and temporal networks, which is
a well-known baseline model for action recognition. Yet,
these works only explores the relationship between sounds
and images, but not the relationship between sounds and
videos. Besides, for video task, most approaches only lever-
age the spatial and temporal data but not auditory data. As
for missing modality problem, Ding et al. [8] proposed a
dictionary learning to guide the knowledge transfer between
and within different face databases. We want to explore the
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new opportunity for action recognition.

In this paper, we propose a audio feature generation
framework for missing modality problem. Our goal is not
only to exploit the relationships between vision and sound,
but also to improve our action recognition results by simulat-
ing the sound feature for the missing ones. We formulate our
problem into cross-modality generation problem. Our model
accepts fused deep features extracted from RGB images as
well as optical flows and produces simulated deep audio
features. In order to learn semantic deep audio feature, we
also utilize the ground truth of action label and adopt multi-
tasking method in training stage. Our experiments show that
these simulated deep audio features boost the performance
of multi-modal action recognition especially on soundless
videos in certain classes.

Specifically, we make the following contributions:

e We design a audio feature generation network to learn
the relationship between visual data and audio data
from videos.

e To our knowledge, leveraging the simulated audio deep
feature generated from spatial-temporal vision data to
improve action recognition is novel.

e Our proposed method performs favorably against two-
stream method on MIT Dataset.

2. PROPOSED METHOD

Our proposed model is intuitive. Since we possess spatial and
temporal modality rather than auditory modality, we formu-
late our problem into cross-modality generation problem. In
the following section, we will introduce our two main archi-
tectures, and then describe our training and testing process.

2.1. LSTM-based sound feature generator

Due to the continuity of videos, we want to exploit the con-
text information among a sequence of frames. Therefore, we
choose LSTM [9] as our generation structure. As shown in
Fig. 2 (a), first we utilize the feature extractor to extract the
spatial and temporal features:

vg = cnng, (Ir),vp = cnng, (Ir), (1)

where Ir, Irp are a set of RGB images and optical flow
images respectively: Ip = {IL1,Ir2,....L 1}, Ir =
{Ip1,Is2,... Irr}. vy € R™ and vy, € R™ are the
RGB and optical flow feature extracted by feature extractor at
time ¢, and ¢ ranges from { 1,2,...,T } for a given video length
T. cnng, and cnng, are feature extractor with parameter ¢.
Then we concatenate the spatial and temporal representations
at time ¢ respectively, aggregating features as the input of
LSTM:

x = LSTM (ve1,Ve,2, s Ve,T) 2)

where v.; = v, ® vy, and & denotes concatenation be-
tween spatial and temporal features. x is the last hidden state
output of the LSTM, which represents the spatial and tempo-
ral information of the entire video sequence.

Finally, we have a two sub-branches and perform the
multi-task learning. The first branch is classification branch:

p(y) = softmaz(Wy(x) + bp) 3)

where W, € R% >4z and b, € R% are learned weights and
biases for action recognition. p(y) is prediction results in ac-
tion recognition.

The second branch is sound feature reconstruction branch.
First, we utilize the sound feature extractor to extract the
sound feature from the video, and we harness it as the ground
truth of sound feature.

r(y) = Wy(z) + b, “4)

where W, € R% %4> and b, € R are learned weights and
biases for sound reconstruction. 7(y) is the reconstruction
of the sound feature. Formally, during training, we define a
multi-task loss as L = L¢js + Lyecon. The classification loss
L, is identical to those defined in action recognition. We
train the network with cross-entropy loss, where the proba-
bilities are obtained through a softmax function. For the re-
construction 10ss Lj¢con, We have two options: L2 loss and
KL-divergence loss.

2.2. Autoencoder-based sound feature generator

Autoencoder [10] is another noted generative model. We re-
place the main structure with autoencoder. As shown in Fig.
2 (b), the entire process is almost identical to the LSTM one.
Autoencoder consists of two parts: encoder and decoder.

I = encoder(ve,1,Ve,2, -y Ve,T), & = decoder(l)  (5)

The encoder takes a random frame of video sequence as in-
put and learns the corresponding latent representation. Then
we exploit the latent representation to predict the action. The
decoder receives the latent representation to reconstruct the
sound feature.

p(y) = softmaz(Wy(l) + by),7(y) = Wr(x) + b (6)

2.3. Training and testing process

We split the dataset into two parts: videos with sound track
and videos without sound track. At training stage, consider-
ing the sound reconstruction needs the ground truth of sound
feature, we utilize the videos with sound tracks to train the
model. At testing stage, the sound reconstruction branch can
predict the sound feature via the spatial and temporal infor-
mation without ground truth of sound feature. Therefore, the
model simulates the sound features for those videos without
sound tracks and assists action recognition task.
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Fig. 2. Overview of our proposed architecture: Since we possess spatial and temporal modality rather than auditory modality,
we intuitively formulate our problem into cross-modality generation problem. We have two main architecture: (a) LSTM-based
sound generator and (b) autoencoder-based sound generator. More details can be found in section 2.1 and 2.2.

3. EXPERIMENTS AND RESULTS

Table 1. The number of videos with sound and without sound.
the number of videos Training Validation

with sound 55,196 6,286
without sound 44,804 3,714
total 100,000 10,000

3.1. Datasets: Moments in Time Dataset (MIT Dataset)

MIT Dataset is a large-scale human-annotated collection of
short videos corresponding to dynamic events and has a sig-
nificant intra-class variation among the categories. We choose
the mini-track of the dataset. The dataset consists of over a
hundred thousand 3-second videos corresponding to 200 dif-
ferent verbs. Each verb is associated with 650 videos result-
ing in a large balanced dataset for learning a basis of dynam-
ical events from videos. According to our statistics, as shown
in Table. 1, nearly 44% videos have no auditory signals.

3.2. Implementation details

We will discuss how to extract the image and sound features,
and how to fuse our prediction of each modality.

Action recognition: We fine-tune a pre-trained Tempo-
ral Segment Network (TSN)[S] on MIT Dataset sampled at
6 FPS. The detailed settings are identical to TSN. After fine-
tuning the network, we utilize TSN as feature extractor to ex-
tract image and optical flow feature.

Sound feature extraction: We use two pretrained models
for audio feature extraction: Audio Event Net (AENet) [11]
and VGGish pretrained on AudioSet[12]. We use wav file
format with 16kHz sampling rate, 16bit, mono channel; the

codec is PCM S16 LE. In AENet, the dimensions of extracted
features are (INV,1024), where N equals to the total length in
seconds. For VGGish, we extract the features into (N, 3, 128)
embeddings.

Fusion method: For sound feature prediction, we train
200 linear SVM binary classifiers for each class using the ex-
tracted AENet and VGGish features respectively. Besides,
we do not perform any preprocessing on the extracted AENet
features while we flatten the extracted VGGish features to di-
mension (N, 384) before we feed them into the SVM classi-
fiers for training and validation. For the final prediction, we
directly add the probabilities of TSN and sound feature.

3.3. Results

In the following section we conduct an ablation study of our
audio feature generation model. First, we want to discuss the
effectiveness of the sound feature for action recognition. We
compare the different combination of sound generation strate-
gies in Table. 2 and Table. 3. Afterwards, we aim to explore
the best combination of our audio feature generation frame-
work. Note that for the baseline row in the table, since we
use the audio feature to acquire our action prediction, we as-
sume that the prediction of the missing-sound videos will be
definitely wrong. Besides, we want to discuss how auditory
modality will affect the performance of multi-modal action
recognition. As shown in Table. 4, it shows that our simu-
lated audio feature significantly improve the multi-modal ac-
tion recognition. Last but not least, we want to observe that
the accuracy of which action class will be enhanced the most
by the effectiveness of sound. We also list the top-3 improved
classes results in Table. 5.

Architecture comparison: We observe that for AENet
sound feature in Table. 2, LSTM-based sound feature gen-
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Table 2. Simulated AENet sound feature for action recog-
nition accuracy on the MIT Dataset.

AENet Top-1 (%) Top-5 (%)
w/o generation (baseline) 4.41 11.78
LSTM
L2 Loss w/ classifier 4.53 11.69
w/o classifier 5.19 13.44
KL Div. w/ classifier 4.47 11.50
w/o classifier 4.45 11.40
Autoencoder
L2 Loss w/ classifier 4.70 11.70
w/o classifier 4.70 11.70
KL Div. w/ classifier 4.52 11.48
w/o classifier 4.55 11.60

Table 3. Simulated VGGish sound feature for action
recognition accuracy on the MIT Dataset.

VGGish Top-1 (%) Top-5 (%)
w/o generation (baseline) 1.57 7.29
LSTM
L2 Loss w/ classifier 1.54 6.91
w/o classifier 1.95 7.59
KL Div. w/ classifier 1.59 6.85
w/o classifier 1.59 6.83
Autoencoder
L2 Loss w/ classifier 2.19 7.86
w/o classifier 2.11 7.84
KL Div. w/ classifier 1.71 7.23
w/o classifier 1.72 6.90

erator performs better than autoencoder-based one. As for
VGGish sound feature in Table 3, autoencoder-based sound
feature generator is better. The experiment shows that the
choices of sound feature generator will depend on the sound
feature.

Loss comparison: In Table. 2, Table. 3, L2 loss defeats
KL divergence in both sound feature and both architectures.
The result shows that L2 loss is a better choice for sound fea-
ture reconstruction.

w/ or w/o classifier comparison: The reason for adding
the classifier branch to the generation structure is that we
want to see if the class label information helps the sound fea-
ture reconstruction or not. Experiment shows that the classi-
fier branch is helpful for autoencoder-based structure while
it is not helpful for LSTM-based structure. Although the
choices of classifier are case by case, they all surpass the re-
sults without generation, which shows that after adding sim-
ulating sound feature, it will definitely improve the accuracy
of action recognition.

Overall comparison: Finally, after choosing our best
audio-simulated framework, we demonstrate the whole ac-
tion recognition results with our simulated features. As
shown in Table. 4, our proposed method outperforms other
methods. We can see significant improvements over each

Table 4. Overall comparison of action recognition. With
the assistance of sound, we demonstrate that simulated sound
feature significantly improves the action recognition.

Method Top-1 (%) Top-5 (%)
RGB (spatial) 24.23 50.86
Flow (temporal) 12.28 29.90
RGB + Flow (fusion) 27.02 52.50
RGB + AENet 26.69 52.62
RGB + VGGish 23.54 49.56
RGB + AENet (Gen-LSTM) 26.91 52.93
RGB + AENet (Gen-AE) 26.78 52.58
RGB + VGGish (Gen-LSTM) 25.96 51.77
RGB + VGGish (Gen-AE) 26.02 51.75
fusion + AENet (Gen-LSTM) 28.19 53.73
fusion + VGGish (Gen-AE) 27.58 53.29

modality input modality as well as over the late-fused results.

Table 5. Improvement ranking for action recognition. We
list the top-3 improved action class. R means RGB feature. S
means original sound feature. S(gen) means simulated sound
feature.

(R+S)vs. R (R+S(gen)) vs. R (R+S) vs. (R+S(gen))
whistling whistling boiling
howling howling wrapping
chewing mowing swimming

Improvement of action class comparison: We com-
pare the performance of each action class after the addition
of sound and list the top-3 improved classes. As shown in
Table 5, we observe that the most-improved classes of orig-
inal sound feature ((R+S) vs.R) are nearly identical to those
of simulated sound feature ((R+S(gen)) vs.R). However, Ta-
ble. 2, 3 demonstrate that the accuracy of simulated features
perform better than that of original features. Hence, we com-
pare the scenario with and without generation and list the
most-improved classes which are also sound-related classes
such as boiling and swimming. The reason for the differ-
ent improved classes is that for those sound-related actions
such as whistling, nearly every video has sound track in our
dataset, which means after our generation, they will not be
improved so much. However, we can still improve the perfor-
mance by those soundless yet sound-related videos such as
boiling and swimming.

4. CONCLUSION

To cope with the missing modality problem, we propose
an approach to simulating deep audio feature from merely
spatial-temporal data. We demonstrate that simulating sound
feature significantly assists our action recognition. Evaluat-
ing our method on the Moments in Time Dataset, we show
that our proposed method performs favorably against the
two-stream architecture.
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