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ABSTRACT

This paper presents multi-feature fusion based on supervised multi-
view multi-label canonical correlation projection (sM2CP). The pro-
posed method applies sM2CP-based feature fusion to multiple fea-
tures obtained from various convolutional neural networks (CNNs)
whose characteristics are different. Since new fused features with
high representation ability can be obtained, performance improve-
ment of multi-label classification is realized. Specifically, in order to
tackle the multi-label problem, sM2CP introduces a label similarity
information of label vectors into the objective function of supervised
multi-view canonical correlation analysis. Thus, sM2CP can deal
with complex label information such as multi-label annotation. The
main contribution of this paper is the realization of feature fusion
of multiple CNN features for the multi-label problem by introduc-
ing multi-label similarity information into the canonical correlation
analysis-based feature fusion approach. Experimental results show
the effectiveness of sM2CP, which enables effective fusion of multi-
ple CNN features.

Index Terms— Multi-label, multi-view, feature fusion, canoni-
cal correlation, convolutional neural network.

1. INTRODUCTION

In order to improve the performance of various tasks such as im-
age classification and retrieval, deep learning-based approaches have
been proposed [1]. Beginning with AlexNet [2], various convolu-
tional neural networks (CNNs) [3, 4] have been proposed. Since
recent CNNs can effectively train a large number of hidden layers,
they can achieve high performance for basic tasks. Recently, transfer
learning such as fine-tuning of pre-trained networks and use of CNN
features calculated from pre-trained networks has been drawing at-
tention [5]. Especially, since CNN features with high representation
ability can be easily calculated without training, they are used in var-
ious tasks in various fields [6].

In the case that CNNs pre-trained from a large scale dataset such
as ImageNet [7] are used as feature extractors, even though the same
dataset is used for training of each CNN, classification results are
often different for each CNN since their network structures are dif-
ferent. For example, as shown in Fig. 1, when an image is input
into two CNNs, the results obtained from different networks do not
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Fig. 1. Classification results of images obtained from two CNNs,
DenseNet201 [3] and Inception-ResNet-v2 [4] pre-trained from Im-
ageNet. “1st” represents the class with the highest output probability.

Fig. 2. Examples of images including multiple labels. Although
these images include both “people” and “dog”, the left image be-
longs to “dog”, and the right image belongs to “people”, respectively.

necessarily become the same. That is, there exist differences be-
tween representation ability of CNNs. In order to improve the per-
formance, the following two solutions can be considered: “selection
of the optimal CNN suitable for the task from a large number of
CNNs” and “feature fusion which can consider the characteristics
of different CNN features”. Since the number of CNN architectures
will increase, selection of CNNs is unrealistic. On the other hand, it
was reported in traditional studies that classification and retrieval ac-
curacy was improved by multi-feature fusion of local visual features
with different characteristics such as HoG and GIST [8]. Therefore,
it is expected that by applying a feature fusion approach to CNN
features calculated from different networks, it is possible to break
limitations of only using a single CNN feature.

In general feature fusion approaches, canonical correlation anal-
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ysis (CCA) [9] is commonly used [10]. Recently, various methods,
which extend CCA, have been proposed, and many of these meth-
ods are constructed for single label annotation [11, 12]. Although
the single-label annotation roughly represents semantic meaning of
images, high-level semantics cannot be extracted via only the single-
label annotation. As shown in Fig. 2, although images from Caltech-
256 [13] belong to one class, they include various meanings other
than a single object. Thus, it is necessary to consider the situation in
the multi-label annotation since there are many cases where not only
a single object but also multiple objects exist in actual data [14].

In this paper, we newly propose multi-feature fusion based on
supervised multi-view multi-label canonical correlation projection
(sM2CP). The main contribution of this paper is the realization of
feature fusion of multiple CNN features for the multi-label problem
by introducing multi-label similarity information into the CCA-
based feature fusion approach. In the situation where labels are
given and multiple kinds of features are provided, it has been re-
ported that supervised multi-view canonical correlation analysis
(sMVCCA) [15], which introduces the concept of both supervised
learning and multi-view, is effective. Since sMVCCA uses label
information for improving discriminability, it is effective for simple
tasks such as the single-label problem. In the multi-label problem,
there is an issue that the number of labels assigned to each sample
is different. Due to the above problem, imbalance of the number of
labels assigned to each sample affects the performance for calculat-
ing the optimal projection of sMVCCA, and it cannot extract highly
semantic features. In order to solve this problem, we construct
sM2CP by introducing the multi-label similarity into the objective
function of sMVCCA. This approach is inspired by multi-label CCA
(mlCCA) [14], and the advantages of sMVCCA and mlCCA are in-
cluded in sM2CP. Consequently, we apply sM2CP to multiple CNN
features and can calculate the optimal projection for the multi-label
problem. Experimental results show the effectiveness of sM2CP
by comparing our method with various fusion methods including
sMVCCA and mlCCA.

2. MULTI-FEATURE FUSION BASED ON SM2CP

In this section, we show the details of sM2CP. sM2CP includes the
following two points: (i) dealing with multi-label problems based on
label similarities and (ii) supervised multi-view learning which can
handle several modalities. Given training images n (n = 1, 2, ...,N; N
being the number of training images), we extract multiple visual fea-
tures xn

m ∈ Rdm (m = 1, ...,M). Note that dm is the number of dimen-
sions of xn

m obtained by inputting an image n into mth CNN architec-
ture. Furthermore, multiple class labels are assigned to each image,
and we obtain class label vectors yn ∈ RC (C being the number of
classes). The elements corresponding to their own classes are one,
and the others are zero. In the proposed method, we regard multi-
ple CNN architectures as the modalities. In addition, we also regard
class label vectors yn as (M+1)th modality in the proposed method,
i.e., we newly define xn

M+1 = yn(n = 1, 2, ...,N).
We calculate the optimal projection wm ∈ Rdm which can ef-

fectively integrate these multiple CNN features by maximizing the
following objective function:

arg max
w1 ,...,wM+1

M+1∑
m1=1

M+1∑
m2=1,m2,m1

w⊤m1
P m1 ,m2wm2√

w⊤m1
Pm1 ,m1wm1

√
w⊤m2

Pm2 ,m2wm2

,

(1)

where Pm1 ,m2 is the covariance matrix between modalities m1 and
m2. Furthermore, P m1 ,m2 is the covariance matrix dealing with class

information. Since the scaling of w does not have influence on the
optimization, Eq. (1) is rewritten as

arg max
w1 ,...,wM+1

M+1∑
m1=1

M+1∑
m2=1,m2,m1

w⊤m1
P m1 ,m2wm2 (2)

s.t. w⊤m1
Pm1 ,m1wm1 = 1 (m1 = 1, 2, ...,M + 1).

By defining W = [W ⊤
1 ,W

⊤
2 , ...,W

⊤
M+1]⊤ ∈ R(d1+...+dM+C)×(dp×(M+1)),

where dp is the dimension of the projection, Eq. (2) can be rewritten
as

arg max
W

trace(W ⊤PW ) s.t. W ⊤PdW = I , (3)

where

P =



0 P 1,2 · · · P 1,M P 1,M+1

P 2,1 0 · · · P 2,M P 2,M+1
...

. . .
. . .

. . .
...

P M,1 · · · · · · · · · P M,M+1

P M+1,1 · · · · · · P M+1,M 0


, (4)

Pd =



P1,1 0 · · · · · · 0
0 P2,2 · · · · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · PM,M 0
0 · · · · · · 0 PM+1,M+1


. (5)

The matrix P m1 ,m2 is detailed below. In multi-label classification
problems, since one sample often has some labels, we focus on label
information for each class based on multi-label linear discriminant
analysis [16] in order to calculate the covariance matrix. Thus, given
a mean-normalized Xm = [x1

m,x
2
m, · · · ,xN

m], the covariance matrix
P m1 ,m2 is obtained as follows:

P m1 ,m2 =

C∑
i=1

N∑
k=1

N∑
l=1

yk
i yl

ix
k
m1

(xl
m2

)⊤, (6)

where yk
i ∈ {0, 1}. If kth sample has ith class label, yk

i = 1, otherwise
yk

i = 0. Furthermore, P m1 ,m2 in Eq. (6) is rewritten as

P m1 ,m2 =

C∑
i=1

Xm1A
multi
i Xm2

⊤

=Xm1A
multiXm2

⊤, (7)

where Amulti = Amulti
1 +Amulti

2 + · · · +Amulti
C ∈ RN×N . If samples n1

and n2 have ith class label, (n1, n2)th element of Amulti
i is one. Thus,

each element of Amulti represents the number of labels shared by two
samples. Equation (7) is formulated based on the definition of the
within-class covariance matrix in discriminative CCA (DCCA) [17],
which is a traditional CCA-based method, and the definition is very
simple. However, the definition is not suitable for the multi-label
problem since DCCA can deal with only the single-label problem.
Thus, it is necessary to improve the definition of Eq. (7), and its
solution is explained below.

Since the number of labels assigned to each sample is different,
imbalance of the number of labels assigned to each sample affects
Amulti. For example, when sample n1 has three labels, the (n1, ∗) el-
ement of Amulti has a maximum of three. On the other hand, when
sample n2 has five labels, the (n2, ∗) element of Amulti has a max-
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imum of five. Therefore, since the range of values is different be-
tween different samples, it is difficult to consider the class informa-
tion correctly.

In order to solve the above problem, we introduce the mlCCA-
based approach into the proposed method. Specifically, we use the
cosine similarity between multi-label vectors of samples n1 and n2

for calculating Amulti as follows:

Amulti =


f (y1,y1) f (y1,y2) · · · · · · f (y1,yN)
f (y2,y1) f (y2,y2) · · · · · · f (y2,yN)
...

. . .
. . .

. . .
...

f (yN ,y1) f (yN ,y2) · · · · · · f (yN ,yN)

 , (8)

where

f (yn1 ,yn2 ) =
yn1⊤yn2

||yn1 || ||yn2 || . (9)

Finally, we solve the following generalized eigenvalue problem:

PW = λ(Pd + γI)W , (10)

where γ is a regularization parameter. Then we can obtain the opti-
mal projection Ŵm ∈ Rdm×dp for fusing multiple CNN features. The
matrix Ŵm consists of the eigenvectors of the dp-largest eigenvalues,
and dp becomes the number of dimensions of the projected features
as explained before. Note that dp ≤ min(d1, ..., dM ,C). By using the
optimal projection matrix, we can calculate the projected features as
follows:

Zm = Ŵ ⊤
m Xm ∈ Rdp×N , (11)

where Zm = [z1
m,z

2
m, ...,z

N
m ]. Then we can obtain the projected

CNN features zn = [(zn
1)⊤, (zn

2)⊤, ..., (zn
M)⊤]⊤ of nth sample and

can construct a classifier by inputting these features. Consequently,
sM2CP can perform the feature fusion of multiple CNN features for
the multi-label problem by introducing the similarities of multi-label
vectors into the objective function of sMVCCA.

3. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of our method. The de-
tails of the dataset, CNN features and classifiers, and comparative
methods used in this experiment are explained in 3.1, 3.2 and 3.3,
respectively. Furthermore, we show evaluation indices, parameter
settings and performance evaluation in 3.4, 3.5 and 3.6, respectively.

3.1. Details of Dataset

In this experiment, we used MIRFlickr-25K dataset [18]. The
MIRFlickr-25K dataset consists of 25,000 images collected from
the social photography website, Flickr. All images are annotated
with 24 semantic concepts including various scenes and objects cat-
egories such as dog, sunset, sky and river. For the 25,000 images, we
performed five-fold cross validation. In order to search parameters
used in the proposed method and other comparative methods, we
divided the training dataset into validation dataset for training and
that for test.

3.2. Details of CNN Features and Classifiers

In order to verify the effectiveness and robustness of the proposed
method, we adopt the three kinds of CNN architectures. Specif-
ically, DenseNet-201 [3], Inception-ResNet-v2 [4] and ResNet50
[19] pre-traind by using ImageNet are used in this experiment. We

extracted visual features from the middle layer of the network. The
dimensions d1, d2 and d3 of DenseNet-201, Inception-ResNet-v2 and
ResNet50 were 1920, 1536 and 2048, respectively. We applied the
proposed method and other comparative methods to all combination
of these features. Furthermore, we trained Extreme Learning Ma-
chine (ELM) [20] as a classifier by using the projected features zn

via sM2CP and obtained class labels via thresholding the output val-
ues of ELM. When output values of ELM are larger than the thresh-
old value, indices corresponding to these output values become esti-
mated labels.

3.3. Comparative Methods

For comparing the classification performance, we adopted some
comparative methods. Specifically, we adopted CCA [9], Cluster
CCA [21], fast multi-label CCA (fast-mlCCA) [14] which is an
extended version of mlCCA, supervised locality preserving CCA
(SLPCCA) [22] and supervised multi-view CCA (sMVCCA) [15]
for fusion of two sets of CNN features. In addition, we adopted
multiset CCA (MCCA) [23], MVCCA [24], Laplacian multiset
canonical correlations (LapMCCs) [12], graph regularized multiset
canonical correlations (GrMCCs) [11] and multi-view discriminant
analysis (MvDA) [25] for fusion of three sets of CNN features. Note
that since LapMCCs and GrMCCs are approaches for the single-
label classification problem, samples with the same multi-label
combination are considered to be the same class in this experiment.
For comparison of CCA-based methods in the multi-label problem,
replacing the multi-label annotation with the single-label annotation
is a general approach [26]. SLPCCA also deal with the single-label
problem. Specifically, SLPCCA is trained in such a way that within-
class samples become minimum and between-class samples become
maximum. Thus, in this experiment, SLPCCA can be applied to the
multi-label problem by defining the above class information based
on a similarity between label vectors. Consequently, we can apply
these methods to the multi-label problem.

3.4. Evaluation Indices

We adopted five evaluation indices, exact matching rates (EMR), ac-
curacy (ACC), hamming loss (Ham loss), macro averaged F-measure
(Macro-F) and micro averaged F-measure (Micro-F). EMR is a ratio
of correctly classifying all the labels of a sample. ACC is a ratio of
the total number of correctly classified labels over all samples. Ham
loss evaluates how many times, on average, an example-label pair is
misclassified. The lower the value, the better the classification per-
formance is. Micro-F aggregates true positives/negatives and false
positives/negatives over labels and is calculated from them. Macro-
F is calculated for each label and takes the average over labels. The
details of these indices are shown in [27].

3.5. Parameter Settings

We determined parameters in such a way that each method outputs
the best classification performance by using the validation dataset.
Specifically, the searching range of each parameter is shown as fol-
lows: the number of hidden neurons of ELM: {300, 500, 700, 1000,
1500}, the threshold value for calculating the final class labels:
{0.01, 0.015, ..., 0.1}, the number of clusters of Cluster CCA: {50, 100,
..., 250}, the number of neighbors of SLPCCA: {100, 1100, ..., 9100}
and those of LapMCCs and GrMCCs: {10, 60, ..., 260}. Since the di-
mension dp ≤ min(d1, ..., dM ,C) , if methods such as sMVCCA and
sM2CP use class label vectors as one modality, we searched dp from
{15, 18, 21, 24}. Otherwise, we searched dp from {100, 200, 500, 800}.
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Table 1. Comparison between sM2CP and the comparative methods.
This table shows results of fusion of DenseNet201 (Dense) [3] and
Inception-ResNet-v2 (Inception) [4].

Methods EMR ACC Ham loss Macro-F Micro-F
Dense [3] 0.317 0.611 0.0802 0.606 0.728

Inception [4] 0.305 0.591 0.0852 0.625 0.709
CCA [9] 0.303 0.610 0.0836 0.646 0.731

Cluster CCA [21] 0.196 0.379 0.155 0.385 0.527
fast-mlCCA [14] 0.355 0.653 0.0728 0.669 0.761

SLPCCA [22] 0.304 0.610 0.0830 0.641 0.731
sMVCCA [15] 0.323 0.631 0.0790 0.681 0.746
sM2CP (Ours) 0.355 0.666 0.0703 0.706 0.771

Table 2. Comparison between sM2CP and the comparative meth-
ods. This table shows results of fusion of Inception-ResNet-v2 (In-
ception) [4] and ResNet50 [19].

Methods EMR ACC Ham loss Macro-F Micro-F
Inception [4] 0.305 0.591 0.0852 0.625 0.709

ResNet50 [19] 0.311 0.594 0.0850 0.595 0.712
CCA [9] 0.301 0.602 0.0854 0.632 0.723

Cluster CCA [21] 0.189 0.359 0.162 0.355 0.507
fast-mlCCA [14] 0.349 0.644 0.0748 0.659 0.752

SLPCCA [22] 0.299 0.603 0.0849 0.639 0.725
sMVCCA [15] 0.317 0.620 0.0817 0.669 0.737
sM2CP (Ours) 0.356 0.656 0.0725 0.685 0.763

Note that a parameter dealing with similarity of SLPCCA was ex-
perimentally set to 0.2. We experimentally set the regularization
parameter γ in our method to 0.01. The activation function of ELM
is a sigmoid function.

3.6. Performance Evaluation

Tables 1, 2 and 3 show the classification results of fusing two CNN
features. Table 4 shows the classification results of fusing all of the
three CNN features. From these tables, the effectiveness of sM2CP
is verified since almost all indices among EMR, ACC, Macro-F and
Micro-F of the proposed method are higher than those of all com-
parative methods. Furthermore, since Ham loss of sM2CP is lower
than those of comparative method, sM2CP is better than the other
comparative methods.

Firstly, we discuss these results obtained from Tables 1, 2 and
3. Although the locality preserving approach is generally effective
for fusion of other modalities’ features such as visual and text fea-
tures [26], the performance of CCA are close to those of SLPCCA
in this experiment. Thus, it is suggested that the locality preserv-
ing approach is not suitable for fusion of CNN features. However,
since the proposed method outperforms these methods, sM2CP can
perform the effective feature fusion of CNN features. By compar-
ing sM2CP with fast-mlCCA, we can confirm that the performance
of sM2CP is higher than that of fast-mlCCA which is a generic and
strong method for the multi-label problem. Furthermore, by com-
paring sM2CP with sMVCCA, the effectiveness of introducing the
multi-label similarity information into a supervised multi-view ap-
proach is verified.

Secondly, we discuss the results shown in Table 4. As with the
results from Tables 1, 2 and 3, since the performance of sM2CP
is higher than that of sMVCCA, we can confirm that sM2CP can
also calculate the optimal projection performing feature fusion of
multiple CNN features. Furthermore, by comparing sM2CP with

Table 3. Comparison between sM2CP and the comparative methods.
This table shows results of fusion of DenseNet201 (Dense) [3] and
ResNet50 [19].

Methods EMR ACC Ham loss Macro-F Micro-F
Dense [3] 0.317 0.611 0.0802 0.606 0.728

ResNet50 [19] 0.311 0.594 0.0850 0.595 0.712
CCA [9] 0.291 0.593 0.0881 0.601 0.718

Cluster CCA [21] 0.186 0.354 0.163 0.340 0.501
fast-mlCCA [14] 0.354 0.642 0.0740 0.641 0.750

SLPCCA [22] 0.292 0.594 0.0871 0.600 0.718
sMVCCA [15] 0.306 0.612 0.0841 0.648 0.731
sM2CP (Ours) 0.348 0.653 0.0707 0.675 0.762

Table 4. Comparison between sM2CP and the comparative meth-
ods. This table shows results of fusion of DenseNet201, Inception-
ResNet-v2 and ResNet50.

Methods EMR ACC Ham loss Macro-F Micro-F
MCCA [23] 0.304 0.614 0.0826 0.638 0.734

MVCCA [24] 0.301 0.599 0.0869 0.595 0.720
LapMCCs [12] 0.273 0.551 0.0946 0.563 0.684
GrMCCs [11] 0.310 0.620 0.0811 0.654 0.740
MvDA [25] 0.256 0.556 0.0986 0.561 0.692

sMVCCA [15] 0.356 0.662 0.0715 0.697 0.768
sM2CP (Ours) 0.357 0.668 0.0698 0.706 0.773

sMVCCA

Ground 

Truth

sM2CP

sea, water, sky, 

transport, clouds

sea, water, people, sky, 

male, transport, clouds

people, sky, transport

female, structures, tree, 

male, people, transport, 

clouds, plant_life, sky

indoor, structures, sky

female, structures, sky, 

people, plant_life, clouds

female, indoor, 

structures, people, male

indoor, structures, 

people, night, male

structures, night

Fig. 3. Examples of multi-label classification results obtained from
the experiments in Table 4. Correctly classified labels are marked in
red.

LapMCCs and GrMCCs which are extended version of MCCA, it is
verified that the label similarity information is more useful than local
structure, discriminative and intrinsic geometrical structure for solv-
ing the multi-label problem. Moreover, as shown in Fig. 3, sM2CP
can extract higher semantic meanings than sMVCCA. Although the
central image includes “tree” as ground truth, it is considered that
“tree” is not representative meanings of the image. Since sM2CP
does not estimate “tree”, sM2CP can effectively extract meanings by
considering objects in images. Consequently, since sM2CP outper-
forms several CCA-based methods, the optimal fusion of multiple
CNN features for the multi-label problem can be realized via sM2CP.

4. CONCLUSIONS

In this paper, we have presented multi-feature fusion based on
sM2CP. sM2CP can perform effective feature fusion of CNN fea-
tures and deal with the multi-label problem. Specifically, sM2CP
introduces the label similarity information into the objective function
of sMVCCA. This is the biggest advantage of sM2CP. Consequently,
the experimental results show the effectiveness of sM2CP, which en-
ables the successful fusion of the multiple CNN features for the
multi-label problem.
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