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ABSTRACT

We present a novel event embedding algorithm for crime data
that can jointly capture time, location, and the complex free-
text component of each event. The embedding is achieved by
regularized Restricted Boltzmann Machines (RBMs), and we
introduce a new way to regularize by imposing a `1 penalty
on the conditional distributions of the observed variables of
RBMs. This choice of regularization performs feature se-
lection and it also leads to efficient computation since the
gradient can be computed in a closed form. The feature se-
lection forces embedding to be based on the most important
keywords, which captures the common modus operandi (M.
O.) in crime series. Using numerical experiments on a large-
scale crime dataset, we show that our regularized RBMs can
achieve better event embedding and the selected features are
highly interpretable from human understanding.

Index Terms— RBM, `1 regularization, feature selection

1. INTRODUCTION

Event data such as crime incidents, medical reports, and so-
cial media data [1, 2] is increasing rapidly in the era of big
data. Each event data sample usually consists of time, lo-
cation, and other description of the event such as free text.
Learning correlation between events has become a pressing
need for event data. Embedding is an efficient solution to rep-
resent unstructured events data by mapping the discrete events
into a continuous Euclidean space, and the distance between
two data points is proportional to their similarity or correla-
tion [3]. Recently, research on embedding has received a lot
of attention. The central problem is to learn the mapping,
which has been achieved via various approaches including
neural networks such as Restricted Boltzmann Machine.

However, a major challenge remains in how to handle free
text of the event. For crime data, the free-text part may ac-
tually contain the most important information. Current em-
bedding approaches based on tokenizing text part as simple
“marks” of events [4] may not be sufficient to capture these
useful information since they are buried in the complex and
unstructured free-text narratives of the police event report. To
achieve the goal, we need to develop models and tools that
combines embedding and natural language processing.

In this paper, we present a novel event embedding ap-
proach that jointly captures the free-text part of the event
data together with other structured data (such as time and
location). We focus on crime event data, where each event
is a police report that contains time, location, and narrative
of the crime incident entered by the investigator. We lever-
age the Restricted Boltzmann Machines’ (RBMs) structure to
perform embedding and introduces a novel way to regularize
RBM to automatically select the most important observed
(visible) variables in order to improve the quality of the em-
beddings.

The motivation for the new regularization for variable se-
lection in our work is two-fold. First, as shown in Appendix
A1, it is motivated because we observe in crime data, very
few of certain keywords in the free-text (which corresponds
to the observed variables in RBMs) are the most important in
defining the correlation between events. Thus, it is crucial
to identify these keywords while eliminating the irrelevant
ones. This can be viewed as performing “variable selection”
for RBM (as analogous to variable selection using lasso for
linear regression model). We found that by focusing on the
most important observed variables (implicitly through regu-
larization), the performance of embedding will be drastically
improved. Second, this regularizes the over-parameterization
of RBM (as typically there is a large number of observed and
hidden variables) in the presence of limited data. Since we
do not know which keywords are the most important a pri-
ori in determining the correlation of events, we extracted as
much as possible from the free-text and this may lead to over-
representation. To a certain extent, the regularization auto-
matically get rid of redundant information and only select the
most crucial variables (keywords).

Our method is unsupervised: training RBM does not re-
quire any “label” of events since RBM essentially captures
the co-occurrence pattern of the observed variables. Thus, our
work can be viewed as an unsupervised variable selection for
embedding purposes. This can be quite important because, in
crime data analysis, it is hard for police officers to provide a
large number of crime incidences that are known to be related
to each other. In our later example, we are only able to iden-
tify 6 groups of labeled data for verification purposes only but

1See https://arxiv.org/abs/1806.06095 for the appendix.
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not for training purposes. To the best of our knowledge, our
work is the first to demonstrate the value of embedding based
on RBM for finding correlated cases in crime data. Although
in the paper, we focus on crime event analysis, this framework
can be generalized to other event embeddings as well.

2. RELATED WORK

Most existing events embedding methods focus on modeling
spatial-temporal dependencies between events [2] for the lo-
cation and time information of the events, by building (hier-
archical) probabilistic models. Some recent work also takes
into account the actual content of the events, for example, the
type (or category) of events [4]. This is done by using Re-
current Neural Networks (RNN) treating category as marks
of events, and thus far usually only a small number of possi-
ble (discrete) marks are considered in the model. However,
this can be restrictive for some real data, as it cannot handle
the case when there is a much richer textual description for
each event, and it is not easy to extend existing work based
on “marks” to handle rich textual event data.

To perform event embedding in the presence of tex-
tual data, a mainstream approach is the so-called Skip-gram
method [5, 6, 7, 1]. Skip-gram was originally introduced to
model the semantic structure of the language [3]. Generally,
it can capture the co-occurrence patterns of words in each
document. However there is no co-occurrence concept in
crime analysis since the manpower of police is too limited
and expensive to define enough context in order to calculate
the co-occurrence of the crime events.

By and large, this is an extensive work based on our paper
[8]. In addition to previous work, this paper extensively con-
siders the regularization for RBM in order to select key fea-
tures from the observed variables. There is also some other
good work take into account regularization for RBM for dif-
ferent purposes. The close work [9, 10] propose various of
regularization on the hidden variables of RBM for yielding
sparsity in hidden variables. Another work [11, 12, 13] came
up with the similar idea of sparse feature learning by impos-
ing regularization on RBM structure. However, the proposed
deep architecture is different from our method and it mainly
focuses on producing good representations with deep feature
hierarchies, which is completely different from the motivation
of feature selection.

3. PROBLEM SETUP

A single event data point consists of a set of observed vari-
ables X = {xs, xt, } [ {xi}i2Z+,iV , where xs 2 RD (D
is the dimension of the space), xt 2 R are temporal and spa-
tial variables respectively, which are explicitly retained in the
model (meaning that they will not be eliminated by the vari-
able selection). And {xi}i2Z+,iV is a set of observed vari-
ables represent the tf-idf value [14] of the keywords in the

vocabulary that appeared at least once in the corpus where
xi 2 R, i indicate the index of the keyword and V is the to-
tal number of the keywords. In our model, x = {xi}i2Z+,iV

will be regularized in order to select key variables. Each event
in the dataset is denoted as a triplet (xs, xt,x)(k) where k is
the index of the event.

Given an event point (xs, xt,x), we define its embedding
as h 2 {0, 1}H with the dimension of H (in our later ex-
amples we set H = 1, 000). The similarities between two
embedding vector can be evaluated by their cosine distance
h ·h0

/khk ·kh0k, where khk denotes the `2 norm of vector h.
The goal is to take the event dataset {(xs, xt,x)(k)} as input
and produce their embeddings {h(k)} accordingly.

4. REGULARIZED RBM

In this section, we present our new regularized RBM with
feature selection. A basic introduction to the vanilla RBM
and its related notations are delegated to the Appendix B2.

4.1. Observed variables selection in RBM

We introduce a `1-regularizer to the log-likelihood of RBM
(2) to mitigate the impact of those noisy variables specifically.
As discussed in Section 1, directly learning the statistical de-
pendencies between all observed variables (the Bag-of-Words
in the corpus) will bring noisy information from irrelevant
variables into the model. To achieve the selection, we impose
an `1 penalty on the probability 1�P (xi < t|x)3 weighted by
�, which penalizes the reconstructed observed variables that
are sensitive to large values. This penalty introduces a natu-
ral way to select the most important features (correspond to
observed variables in RBM). A nice feature of this penalty is
that the corresponding gradient can be computed easily.

Thus, given one training data x, we need to solve the fol-
lowing optimization problem. This leads to our new formu-
lation which performs the selection of observed variables for
RBM:

max
w,b,c

n
log L(✓|(xs, xt,x))�

�

X

iV

|1 � P (xi < t|x)|
o (1)

By tuning the weight � of the penalty, we can achieve various
levels of sparsity in terms of a subset of observed variables
{xi}, i  V .

We solve this optimization problem by gradient descent
(note that this is a non-convex problem and gradient descent
is a default approach to solve it). Because, in crime anal-
ysis, the observed variables are real values (tf-idf), we take
the Gaussian-Bernoulli RBM (GBRBM) as an example. 1 �
P (xi < t|x) can be rewritten into the following expression

2See https://arxiv.org/abs/1806.06095 for the appendix.
3Here t is a very small constant, we preset t = 10�2 here since the

impact of a tf-idf value lower than 10�2 can usually be ignored.
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Fig. 1: Fitting RBM with and without designed penalty term
over 2,056 crime events (including 7,038 observed variables).
Under same experiment settings (learning rate ↵ = 10�3,
threshold value t = 10�2): (1a): training errors over itera-
tions; (1b): numbers of eliminated (disabled) variables over
iterations, and (1c): result of cross-validation over �.

by substituting Eq.(7) (other types of RBM can be processed
in a similar fashion):

|1 � P (xi < t|x)| = 1�
Z

t

�1

1

�
p

2⇡
· e

� 1
2�2 (xi�bi��

P
H

j=1 hjwij)
2

dxi.

We can directly compute its gradients with respect to wij and
bi in a closed-form due to the exponential structure in the sec-
ond term of it log-likelihood function. By introducing this
penalty term, the gradients rwij and rbi in Eq.(3) and Eq.(4)
can be rewritten as follows:

rwij = hxihjip(h|x) � hxihjip(x,h)

� �
hjp
2⇡

X

iV

exp(� 1

2�2
(t � bi � �

HX

j=1

hjwij)),

rbi = xi � hxiip(x)

� �
1

�
p

2⇡

X

iV

exp(� 1

2�2
(t � bi � �

HX

j=1

hjwij)).

4.2. Training and interpretation

The standard training approach for RBM is still applied in the
regularized RBM thanks to the explicit closed-form of wij

and bi. The training objective of the regularized RBM is to
maximize a likelihood function defined via the energy func-
tion defined in (1). We adopt the k-step contrastive divergence
(CD-k) approach for the training, which is an approach to ap-
proximate the gradient in training RBM via gradient descent
[15], where the gradients have been defined above. The Gibbs
chain is initialized with a training example of the training set
and yields the sample after k steps. The iterations are repeated
until certain empirical convergence has achieved.

Regarding feature selection, the effects of the `1 regu-
larization can be interpreted intuitively. The `1 norm yields
sparsity within the given subset of observed variables, which
means that some variables’ norms are set zero, or their acti-
vation possibilities tend to produce zero values. During the
course of training, only very few of observed variables in

the subset will win this competition, and their impact to the
embeddings will get enhanced, though meanwhile, the effect
of irrelevant variables will vanish eventually. Therefore, for
our application, we impose the penalty on the subset of ob-
served variables that associate the input of the Bag-of-Words
vectors and successively eliminate keywords due to the reg-
ularization. As shown in Fig.1a and Fig.1b, the regularized
RBM prominently disable the most of keywords in the vo-
cabulary (only 280 keywords are retained after convergence)
when � = 10�3 without losing too much accuracy on train-
ing errors. And in Fig.1c, we also show a surrogate cross-
validation result over � in which the model achieves the best
performance at some point. Differs from feature selection in
a linear model (e.g., through lasso), here we have to perform
a reconstruction (similar to back propagation) step on the ob-
served variables. The benefits of denoising observed variables
will be presented in the embeddings due to the symmetrical
structure of RBM.

5. EXPERIMENTS ON REAL-DATA

To provide a comprehensive validation, we test our approach
on crime events data provided by the Atlanta Police Depart-
ment over 2016 and 2017 with carefully picked � = 10�3

according to the result of cross-validation in Fig.1c. We show
the superiority of our method over other competitors under
the same parameter settings, including the vanilla RBM with-
out regularization, Latent Dirichlet Allocation (LDA), Sin-
gular Value Decomposition (SVD), denoising Autoencoder.
Specifically, the objective goal of these methods is to gener-
ate embeddings for each data point with the length of 1,000.
We are ultimately looking for the distributed representations
for each of the crime events, and the representations would
tend to be closer in Euclidean distance if the crimes follow
the same M.O. (committed by the same arrestee, suspect, or
criminal gang).

Dataset. The dataset for the experiments contains 2,056
crime events in total happened in Atlanta over past two years,
which consists of 56 hand-labeled events that belong to 5 in-
dividual crime series committed by different arrestees, and
2,000 randomly selected unknown events. The overall crime
events involve 123 crime categories. Each crime event mainly
includes time, location (latitude and longitude), crime cate-
gory and free text part. The most important part is free text,
all the text have been preprocessed into a Bag-of-Words, in-
cluding 7,039 keywords and 2,056 documents.

5.1. Visualization via t-SNE

In order to intuitively inspect how the high-dimensional
embeddings distribute in a 2D space, we first use two-
dimensional t-distributed stochastic neighbor embeddings
(t-SNE) [16] to project the embeddings with 1,000 binary
units into a 2D space. t-SNE is capable of capturing local
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Fig. 2: Embeddings of 2,056 crime events projected into a 2D
space by t-SNE. (2a), (2b), (2c), (2d), (2e) are generated by
regularized RBM (� = 10�3), vanilla RBM, truncated SVD,
single layer denoising autoencoder and LDA repectively.

structure of the high-dimensional data, while also revealing
global structures such as the presence of clusters at several
scales [16]. Since the embeddings capture events’ similarities
by vicinity in the Euclidean space, the performance of events
embeddings can be visually evaluated by the aggregation
degree of labeled events (colorful dots) in such 2D space.
Ideally, events that belong to the same crime series should
aggregate highly in a local region of the embedding space.
In Fig.2 we compare LDA, truncated SVD, single layer de-
noising Autoencoder, vanilla RBM, and regularized RBM
(� = 10�3) on the crime dataset by observing their distri-
butions visually in t-SNE 2D space. Notice that the each
larger and colored dot means individual labeled crime events.
regularized RBM outperforms LDA, RBM, denoising Au-
toencoder with truncated SVD delivering competitive per-
formance. Compare to the vanilla RBM, the regularization
helps improve the quality of the embeddings remarkablely.
For instance, the subregion within the red dashes circle over
95% the green dots, the subregion in Fig.2a is obviously
tighter than Fig.2b.

5.2. Retrieval performance (F1 score)

In order to further evaluate the quality of the embeddings ac-
curately, we test them as a retrieval problem, and adopt a basic
quality measure, F1 score, widely used in the text mining lit-
erature for the purpose of document clustering [17]. The F1

score combines the Precision and Recall ideas from the in-
formation retrieval literature. The precision P and recall R

given a query (crime event) with respect to its true class (rel-
evant crime events or crime series) are defined as:

P =
|relevant crime events \ retrieved crime events|

|retrieved crime events| ,

R =
|relevant crime events \ retrieved crime events|

|relevant crime events| ,

And the F1 score of a query q is defined as F1 = 2 · P ·R
P+R

. To
perform a fair test all the methods, we consider the method
with the highest average F1 score to be the best model that
maps crime pattern to the embeddings space.

In the experiment, we first generate embeddings and cal-
culates the pairwise similarities between the crime events ac-
cording to their cosine distances. And then retrieve the top N

keywords given a labeled crime event as a query, as shown in
Fig.2f, the RBM with regularization is overwhelmingly better
than the others in terms of their F1 score.

5.3. Keywords selection

As we mentioned in the previous section, we cannot obtain
the determinate selected features directly from the model. But
we do have some indirect approaches to evaluate the quality
of the selected variables intuitively. As shown in Fig.4a, Ap-
pendix C4, we calculate the standard deviations for each of the
keywords in the vocabulary over the 2,056 crime events. Most
of the keywords in the dataset vary considerably. However, in
Fig.4b, after reconstructing the same crime events from the
RBM with regularization, a large number of keywords have
been disabled and are always zero values without variation.

The remaining activated keywords are very intriguing. We
compare top 15 keywords with the highest intensity for both
raw dataset and the reconstructed dataset in Fig.4. Obviously,
most of the keywords in Fig.4a are irrelevant to the crime be-
haviors or even meaningless, but the keywords in Fig.4b is the
opposite, some of them are even highly consistent with the re-
sults we present in Fig.3, Appendix A5. The selected words
such as “toyota corolla”, “drivers door”, “black leather”,
“silver vehicle”, “one ounce”, “outside apartment” or “ho-
tel” are the strong indicators to the crime patterns from the
perspective of police understanding.

6. CONCLUSION

We have presented a novel approach for learning embeddings
for crime events with unsupervised feature selection. By
imposing a well-designed `1 penalty on observed variables’
activation probabilities that leads to simple gradient descent
based algorithm, our regularized RBMs are able to produce
high-quality embeddings as well as eliminate irrelevant and
noisy features in observed variables. Additionally, regular-
ized RBMs can select key features without supervision. The
selected features are not only highly sparse but also inter-
pretable to human. The techniques introduced in this paper
can be also used for learning some other high-dimensional
dataset with complex interdependencies between their fea-
tures. Using real-data, we show promising results on a large-
scale real crime dataset comparing to conventional methods
for text embedding.

4See https://arxiv.org/abs/1806.06095 for the appendix.
5See https://arxiv.org/abs/1806.06095 for the appendix.
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