
EFFICIENT CONVOLUTIONAL NEURAL NETWORK WEIGHT COMPRESSION FOR
SPACE DATA CLASSIFICATION ON MULTI-FPGA PLATFORMS

George Pitsis∗ , Grigorios Tsagkatakis, Christos Kozanitis, Ioannis Kalomoiris∗,

Aggelos Ioannou, Apostolos Dollas∗, Manolis GH Katevenis† , Panagiotis Tsakalides†

Institute of Computer Science
Foundation for Research and Technology, Hellas

N. Plastira 100, V. Vouton, Heraklion, 70013 Greece

ABSTRACT

Convolutional Neural Networks (CNNs) represent the cutting
edge in signal analysis tasks like classification and regression.
Realization of such architectures in hardware capable of per-
forming high throughput computations, with minimal energy
consumption, is a key enabling factor towards the prolifera-
tion of analysis immediately after acquisition. Our driving
problem is a satellite-based remote sensing platform in which
onboard signal processing and classification tasks must take
place, given strict bandwidth and energy limitations. In this
work, we exploit the implementation of a CNN on Field Pro-
grammable Gate Array (FPGA) platforms and explore differ-
ent ways to minimize the impact of different hardware restric-
tions to performance. We compare our results against com-
peting technologies such as Graphics Processing Units (GPU)
in terms of throughput, latency and energy consumption. In
actual experimental runs we demonstrate competitive latency
and throughput of the FPGA platform vs. GPU technology
at an order-of-magnitude energy savings, which is especially
important for space-borne computing.

Index Terms— Convolutional Neural Networks, Field
Programmable Gate Arrays, Hardware for Deep Learning,
Remote Sensing, Space Data

1. INTRODUCTION

Deep Learning frameworks like Convolutional Neural Net-
works (CNNs) are becoming the new gold standard in a
diverse set of signal analysis tasks, ranging from image clas-
sification [1] to seizure detection in EEG signals [2]. In
the domain of remote sensing, CNN based methods have
demonstrated exceptional performance [3], surpassing com-
peting methods in numerous situations, from the fusion of
observations from multiple platforms [4] to pixel level scene
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classification [5], and more exotic ones like identifying pat-
terns in urban environments from satellite images [6].

However, despite their potential in term of analysis met-
rics, existing approaches still rely on the traditional acquire-
compress-transmit paradigm, where the bulk of processing
happens in dedicated ground-stations with large-scale re-
sources that consist mainly of Graphics Processing Units
(GPUs), e.g. [7]. This paradigm is facing significant chal-
lenges which stem from the dramatic increase in terms of
observation volume at a minimal growth of available band-
width, especially for miniaturized platforms like CubeSats
or unmanned aerial vehicles [8, 9], not to mention the low
latency requirements.

The onboard signal processing and analysis mandate the
use of hardware platforms capable of high throughput anal-
ysis tasks at low latency while adhering to the severe en-
ergy limitations that characterize miniaturized platforms [10].
A major challenge towards this objective is that CNN-based
inference requires multiplications and aggregations of mil-
lions of model parameters, typically encoded as 32-bit float-
ing point numbers. Implementing floating point operations
on hardware, however, results to significant size and power re-
quirements, while a simple mapping to fixed point operations,
such as the approach employed by the Tensor Processing Unit
developed by Google [11] can lead to dramatic performance
losses, as demonstrated in our experimental results.

In this work, we explore the realization of CNN-based
inference on Field Programmable Gate Array (FPGA) plat-
forms for the automated analysis of deep space observations
acquired by satellites. The key novelties of this work include:
(i) the exploration of different weight compression mecha-
nisms, which include reductions on the representation of the
stored weights through mapping to fixed point representa-
tions, as well as the clustering of weights through hierarchical
clustering schemes that encode the weight distribution; (ii)
the demonstration of how appropriate compression schemes
allow for the efficient and scalable realization of the entire
inference architecture, both in single- and multi-FPGA sys-
tems; (iii) the experimental demonstration that not only are
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FPGAs an appropriate hardware platform for this task, but
their performance in terms of throughput, latency, and energy
efficiency surpass the established GPU paradigm.

2. DATA AND NETWORK DESCRIPTION

We focus our study on spectroscopic observations across a
wide range of spectral bands with the aim of estimating the
acceleration of the universe through a precise estimation of
the redshift property associated with individual galaxies. As
a case study, we consider simulated measurements which will
be acquired by the upcoming ESA Euclid deep space mis-
sion, using publicly available specifications of the platform
[12, 13]. We formulate the regression problem of estimating
the continuous redshift estimation as a supervised multi-class
classification task, where the potential range of redshift de-
tectable by the instrument is divided into equally spaced bins
[14]. More specifically, our example corresponds to a spec-
troscopic signal in the range 1.1-2.0 µm, encoded into 1800
spectral bands and associated with a one out of 800 classes
corresponding to a particular redshift range z = [1, 1.8).

To perform the signal classification, we consider a CNN
architecture comprising of three main types of layers, namely
convolutional layers, non-linear activation layers, and fully
connected layers. In the proposed architecture, three groups
of convolutions and activations are utilized, where each con-
volution employs 8 × 1 kernels and the non-linear activa-
tion function corresponds to Rectified Linear Units (ReLU).
The outputs of the third activation function are introduced
to a fully-connected layer, which computes the output class
through the use of a multi-class Softmax regression. The
network was implemented using the Tensorflow library and
trained using 400, 000 examples. The performance is quan-
tified in terms of top-1 accuracy (or equivalent classification
error), where a 99% classification accuracy was achieved for
the testing examples [14]. The overall processing required for
an input signal is 61 million floating-point operations.

3. COMPRESSION OPPORTUNITIES

Typical CNN models consist of millions of parameters,
whose storage requirements are too large for the capabili-
ties of memory-limited FPGA-based implementations. In
FPGAs, the on-chip static memory, which is called Block
RAM (BRAM), is immensely fast but its size is too small -
just a few MB; on the other hand, external memory (Dynamic
RAM - DRAM) has significantly larger size (tens of GB) but
limited bandwidth. The CNN under investigation is param-
eterized by ∼22.7M weights, which require approximately
173 MB of storage using 64-bit double precision floating
point variables. It, thus, becomes essential to reduce mem-
ory size in order to accelerate the network and achieve high
throughput/Watt due to reduced memory traffic [15].

Previous work tries to address this challenge by restricting
the weights of the CNN from Hybrid Block Float [16] to bi-
nary values [17, 18], however, the generalization capacity of
such network is still under investigation. Our work is similar
in the spirit to Han et al. [19], who demonstrated that a combi-
nation of pruning, weight quantization, and Human encoding,
in conjunction with re-training of the network, can achieve
an x49 reduction of the memory footprint. We demonstrate
that additional gains can be achieved by introducing more so-
phisticated weight clustering schemes, including hierarchical
clustering and inverse density normalization of codebooks.
Furthermore, unlike [19], we demonstrate significant system
performance gains with minimal impact in terms of analysis
performance, i.e., without the need for retraining the CNN.

3.1. Weight Pruning

The first technique that we explored was the weight prun-
ing of the fully connected layer, which sets weights under
a threshold (called “pruning factor”) to zero. The results of
Figure 1 demonstrate that there is a trade-off between net-
work accuracy and the pruning factor. Based on these results,
we selected a pruning factor of 0.01 (highlighted in Figure 1),
as it achieves the highest weight reduction (68.7%) with the
least possible loss of network accuracy (0.2% error rate).

Fig. 1. Impact of weight pruning.

3.2. Using Static and Dynamic Fixed Point Operations

While using floating-point operations guarantees high accu-
racy results, floating point solutions in hardware are signifi-
cantly more expensive in terms of resources, e.g., number of
Digital Signal Processors. The alternative solution involves
the use of fixed-point encoding which in FPGA designs are
very efficient [15], provided the resolution and range of data
are known beforehand so that the appropriate format is se-
lected. Another option is the use of dynamic fixed-point en-
coding, where instead of using a global scaling factor, multi-
ple factors can be used depending on the application’s needs.

Table 1 reports the compression and associated classifica-
tion error for both static and dynamic fixed-point formats (for
the dynamic cases, several bits are used for the output layer,
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while for all cases, the convolutional layers is encoded using
32-bit fixed point). The results demonstrate that although the
memory footprint is improved significantly with static fixed-
point, there is substantial reduction in accuracy. Dynamic
fixed-point encoding improves the error rate vs. static encod-
ing; nevertheless, a substantial error-rate is still present.

Table 1. Impact of fixed point encoding
Format Compression Error rate (%)

St
at

ic 32 bit x2 0.8
24 bit x2.7 3.8
16 bit x4 20.1

D
yn

am
ic 12 bit x5.3 2.8

8 bit x8 8.1
7 bit x9.1 10.2

3.3. Weight Clustering

Our experimentation with fixed point (both static, and dy-
namic) of Section 3.2 revealed an important trade-off: the
memory footprint can be significantly improved at the cost
of prediction accuracy. To work around this trade-off, we
explored a hybrid solution which maintains the floating point
representation of weights (using double or single precision),
but with a much smaller memory footprint. In this case,
weights of similar magnitude are grouped together and rep-
resented using a small number of centroids obtained through
clustering, such that for storing k centroids, only log2 k bits
are necessary. The impact in terms of accuracy associated
with a different number of selected centroids is shown in
Figure 2.

Fig. 2. Impact of single-level clustering of weights

To further increase the compression of weights, two ex-
tensions of the single-level clustering were explored, namely,
hierarchical clustering and frequency based normalization.
For the case of hierarchical clustering, we consider a two-
level bottom-up approach such that initially weights are clus-
tered to a larger cluster and subsequently to a smaller one.
Furthermore, analysis of weights revealed that they coarsely
follow a Gaussian distribution centered around zero. In order
to exploit this observation we also impose a normalization,
achieved by initializing the codebook of centroids based on
the inverse of the frequency of occurrence. This way values
around zero are more densely packed as compared to larger
values, i.e., there is a small number of centroids representing
values around zero as compared to large ones.

Figure 3 shows that for the same number of bits per
weight, hierarchical clustering and frequency based opti-
mization lead to significant performance benefits for a given
bit budget. Based on these results, we opted for normalized
hierarchical clustering of 256 and 16 centroids (i.e. we need
only 4 bits per weight), thus achieving x16 compression at a
minimal 0.6% classification error. The combination of the
methods shown in Figure 3 is a major contribution of this
work.

Fig. 3. Impact of different weight clustering schemes.
H. Clust= Hierarchical Clustering, Norm= Inverse Density,

(n,k)=(level1 centroids, level2 centroids)

4. HARDWARE IMPLEMENTATION

The first hardware architecture approach, based on the initial
weights, was deployed in 2 FPGAs. The first FPGA com-
puted the Convolutional Layers, while the second computed
the Fully Connected Layer. The main bottleneck of this de-
sign was the I/O - 174 MB from main memory for every signal
weight’s footprint. Subsequently, we developed the optimized
architecture using our results for the weight compression (see
Section 3.3). We stored in FPGA the codebook (32-bit Float-
ing Point) in the BRAM and use an on-FPGA 256-bit channel
to stream the 4-Bit indices of weights. As a result, we end up
with a 16x I/O reduction, being able to stream 64 weights in
one cycle, thus uncovering massive parallelism at the oper-
ation level. Finally, resource optimizations were realized in
order to fit the network into an FPGA. Another fully imple-
mented optimization is the creation of a huge pipeline from
the input signal loading the network until the final Classifica-
tion. To achieve pipelining between network layers, shift-type
FIFOs were used by extracting the intermediate results from
previous layers in such a way that the subsequent layer can
start processing the corresponding partial result.

4.1. Porting to QFDB FPGAs

The target board is the Quad-FPGA Daughter-Board (QFDB)
designed as part of the EU-ExaNeSt project in order to of-
fer both high compute density and high flexibility. It contains
four Xilinx Zynq Ultrascale+ FPGAs (model: ZCU9), 64 GB
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of DRAM (16GB per FPGA) and SSD storage. These FP-
GAs integrate four ARMv8 Cortex-A53 (PS), connected to
the Programmable Logic (PL) through a low latency interface.
The PL features 274KLUTs, 2520 DSP cores, 4 MBytes of
BRAM and a DDR controller. An all-to-all topology is used
for FPGA interconnection which is accomplished with the use
of multiple high-speed serial transceivers, reaching 16.3Gbps.

The tremendous resource savings due to parameter com-
pression create a new opportunity for parallelism: Batching.
Instead of computing the results for a single data signal, two
data signals can be processed in parallel by each device of the
QFDB. By creating 4 Instances of the Accelerator we end up
in Batch 8. Table 2 presents the improvement in the perfor-
mance of the network after the use of compressed weights.
More specifically, while using the same bandwidth from the
DDR we end up with a 25x speedup vs. the initial approach.
The optimized design reaches a peak performance of 416
GFLOPS/s when its pipeline is full.

Table 2. Performance comparison between designs
Design Throughput Performance Bandwidth

(Signals/s) (GFLOPS/s) (GB/s)
Initial 173 10.5 9.23
Optimized 4334 265 9.23

5. COMPARATIVE EVALUATION

We compared our QFDB design against an NVidia Quadro
P1000 GPU, which is of slightly better technology generation
vs. the FPGAs of the QFDB. In both setups we took measure-
ments from predictions on 10K signals and explored the im-
pact in terms of throughput, latency and energy requirements
for a diverse set of batch sizes in Figures 4 and 5.
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Fig. 4. Throughput and latency of QFDB and P1000 for dif-
ferent batch sizes, using one and two QFDB boards.

Figure 4 demonstrates that for the GPU, the throughput
increases exponentially at the cost of latency as the batch
size increases. Thus, the maximum throughput of the QFDB,
which is achieved for a batch size of 8, outperforms the
throughput of the P1000 GPU as long as the latter operates

with a batch size smaller than 30. On the other hand, the
latency of each batch increases by up to two orders of mag-
nitude for large batch sizes, compared to the QFDB where
it remains independent from the batch size. The high en-
ergy efficiency of the QFDB board allows the deployment of
two QFDB boards to work in parallel in order to outperform
the GPU throughput (see rightmost datapoint of Figure 4).
According to Figure 5, the P1000 GPU achieves its lowest
energy consumption at the highest batch size, as it takes the
shortest time to complete the execution of 10,000 predictions.
Yet, this requires ×5 more energy vs. the QFDB. These
results demonstrate that the use of two QFDBs in parallel
achieve ×1.23 better throughput vs. the P1000 GPU, while
they consume in aggregate ×5 less energy and they have
more than an order of magnitude lower latency.
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Fig. 5. Energy efficiency comparisons. A single QFDB takes
a maximum of 109 Joules, while the P1000 requires 517
Joules (larger batch sizes where it’s most efficient). For two
QFDB boards running in parallel the energy is maintained at
109 Joules since the effective throughput doubles.

6. CONCLUSIONS
In this work, we systematically examine the impact of FPGA
hardware constraints on the classification performance of
CNN, and approaches to mitigate the identified challenges.
By considering sophisticated weight compression schemes
via clustering, we dramatically reduce the size of the CNN
(from 174 to 11 MB). This reduction allows the realization
of the network in a single FPGA, and thus leads to the par-
allel on-chip execution of inference. Experimental results
demonstrate that the proposed solution achieves extremely
competitive performance vs. typical GPU platforms in terms
of throughput, latency, and energy consumption.
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