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Abstract—Quantizers play a critical role in digital signal processing
systems. In practice, quantizers are typically implemented using scalar
analog-to-digital converters (ADCs), commonly utilizing a fixed uniform
quantization rule which is ignorant of the task of the system. Recent
works have shown that the performance of quantization systems utilizing
scalar ADCs can be significantly improved by properly processing the
analog signal prior to quantization. However, the implementation of such
systems requires complete knowledge of the underlying model, which
may not be available in practice. In this work we design task-oriented
quantization systems with scalar ADCs using deep learning, focusing on
the task of multiple-input multiple-output (MIMO) channel estimation.
By utilizing deep learning, we construct a task-based quantization system,
overcoming the need to explicitly recover the system model and to find
the proper quantization rule for it. Our results indicate that the proposed
method results in practical MIMO systems with scalar ADCs which
are capable of approaching the optimal performance limits dictated by
indirect rate-distortion theory, achievable using vector quantizers and
requiring complete knowledge of the underlying statistical model.

Index terms— Quantization, deep learning, channel estimation.

I. INTRODUCTION

Digital signal processing systems typically require a finite-
dictionary representation of continuous-amplitude analog signals. The
mapping of an analog signal into a digital representation with a finite
number of bits is referred to as quantization [1]. This representation
is commonly selected to accurately match the quantized signal, in the
sense of minimizing some distortion measure, such that the signal can
be recovered with minimal error from the quantized measurements
[2], [3, Ch. 10]. In many relevant scenarios, the task of the system
is to recover some underlying parameters, and not to accurately
represent the observed signal. In these cases, it was shown that
by accounting for the system task in the design of the quantizers,
namely, by utilizing task-based quantization, the performance can be
improved without increasing the number of bits used [4], [5].

In practice, quantizers are typically implemented using analog-to-
digital converters (ADCs), which operate on the input signal in a
serial scalar manner. In such systems, the quantization rule is based
on a uniform partition of a subspace of the real line, determined by
the dynamic range of the quantizer. This quantization logic is very
limited due to its simplicity, hence, with the exception of the specific
case where the input is uniformly distributed over the dynamic range
of the quantizer, uniform quantization is far from optimality [6, Sec.
22], namely, a more accurate representation can be obtained with the
same number of bits. Furthermore, such quantizers typically do not
account for the system task, namely, they are task-ignorant.

Quantizers are inherently non-linear systems, thus, the design and
implementation of practical quantizers which provide an accurate
discrete representation while accounting for the task of the system, is
in general difficult for the following reasons: 1) It requires complete
knowledge of the stochastic model of the underlying signal [1],
[2], which may be unavailable in practice, and 2) Even when the
stochastic model is perfectly known, the scalar quantization rule
which minimizes the representation error is generally unknown for
most distributions under finite resolution quantization [6, Ch. 23.1].
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A promising approach to efficiently implement task-based quantizers
without the need to explicitly know the underlying model and to
analytically derive the proper quantization rule for it is to use deep
learning algorithms. Existing works on deep learning for quantization
typically focus on image compression [7]–[10], where the goal is
to represent the analog image using a single quantization rule, i.e.,
non task-based vector-quantization. Alternatively, a large body of
deep learning related works consider deep neural network (DNN)
model compression [11]–[13], where a DNN operates with quantized
instead of continuous weights. To the best of our knowledge, despite
the importance of quantization with scalar ADCs in digital signal
processing, the application of deep learning in such systems has not
yet been studied.

In this paper we consider the application of DNNs for task-based
quantization, utilizing practical ADCs. Since continuous-to-discrete
mappings applied in the quantization process are inherently non-
differentiable, standard deep learning training algorithms, such as
stochastic gradient descent (SGD), cannot be applied in a straight-
forward manner. To overcome this difficulty, we propose two methods
for applying deep learning to train task-based quantizers operating
with scalar ADCs.

Then, we focus on the problem of channel estimation from
quantized observations in multi-user multiple-input multiple-output
(MIMO) communications, a setup representing common wireless
communications networks. In these scenarios there is an urgent need
for efficient low resolution quantization, due to the increasing com-
plexity and bitrate demands of modern communications [14]–[16].
We compare the performance our our proposed DNN-based system
to previous channel estimators from task-ignorant quantized mea-
surements, as well as to the optimal task-based estimator proposed
in our previous work [5]. We also compare with the fundamental
limits on channel estimation performance in MIMO systems with
quantized observations, derived using rate-distortion theory which is
achievable using optimal vector quantizers [6, Ch. 23]. Our results
demonstrate that, even when the DNN-based quantizer is trained with
samples taken from setups with different signal-to-noise ratio (SNR),
it is still able to approach the performance of the optimal task-based
quantizers with ADCs for varying SNRs, which is within a small gap
of the fundamental performance limits.

The rest of this paper is organized as follows: Section II introduces
the problem formulation; Section III discusses the implementation
of scalar quantization systems using DNNs; Section IV presents its
application to MIMO channel estimation.

Throughout the paper, we use boldface lower-case letters for
vectors, e.g., x. Matrices are denoted with boldface upper-case letters,
e.g., M . Sets are denoted with calligraphic letters, e.g., X . We
use In to denote the n × n identity matrix and ⊗ as the symbol
for the kronecker product. Transpose, Euclidean norm, stochastic
expectation, real part, and imaginary part are written as (·)T , ‖·‖,
E{·}, Re (·), and Im (·), respectively, R is the set of real numbers,
and C is the set of complex numbers.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries in Quantization Theory
To formulate the problem, we first briefly review the standard

quantization setup. While parts of this review also appear in our
previous work [5], it is included for completeness. We begin with
the definition of a quantizer:
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Definition 1 (Quantizer). A quantizer Qn,kM (·) with logM bits, input
size n, input alphabet X , output size k, and output alphabet X̂ ,
consists of: 1) An encoding function fn : Xn 7→ {1, 2, . . . ,M} ,M
which maps the input into a discrete index. 2) A decoding function
gk : M 7→ X̂ k which maps each index i ∈ M into a codeword
qi ∈ X̂ k.

We write the output of the quantizer with input x ∈ Xn as x̂ =
gk (fn (x)) , Qn,kM (x). Scalar quantizers operate on a scalar input,
i.e., n = 1 and X is a scalar space, while vector quantizers have a
multivariate input. When the input size and the output size are equal,
n = k, we write QnM (·) , Qn,nM (·).

In the standard quantization problem, a QnM (·) quantizer is de-
signed to minimize some distortion measure dn : Xn × X̂n 7→ R+

between its input and its output. The performance of a quantizer is
characterized using two measures: the quantization rate, defined in
the standard quantization setup as R , 1

n
logM , and the expected

distortion E{dn (x, x̂)}. For a fixed input size n and codebook size
M , the optimal quantizer is

Qn,optM (·) = argmin
Qn

M
(·)
E {dn (x, QnM (x))} . (1)

Characterizing the optimal quantizer via (1) and the optimal trade-off
between distortion and quantization rate is in general a very difficult
task. Optimal quantizers are thus typically studied assuming either
high quantization rate, i.e., R→∞, see, e.g., [17], or asymptotically
large inputs, namely, n → ∞, typically with i.i.d. inputs, via rate-
distortion theory [3, Ch. 10].

In task-based quantization, the design objective of the quantizer is
some task other than minimizing the distortion between its input and
output. In the following, we focus on the generic task of acquiring
a zero-mean random vector s ∈ Rk from a measured zero-mean
random vector x ∈ Rn. This formulation accommodates a broad
range of tasks, including channel estimation, covariance estimation,
and source localization [4], [5]. For task-based quantization with the
the mean-squared error (MSE) distortion, i.e., d(s, ŝ) = ‖s − ŝ‖2,
it was shown in [18] that the optimal quantizer applies standard
quantization to the MMSE estimate of the desired vector s from
the observed vector x. While the optimal system utilizes vector
quantization, its structure indicates that processing the observations
in the analog domain is beneficial in task-based quantization.

B. Problem Statement
As discussed in the introduction, practical digital signal process-

ing systems typically obtain a digital representation of physical
analog signals using serial scalar ADCs. Since in such systems,
each continuous-amplitude sample is converted into a discrete rep-
resentation using a single quantization rule, this operation can be
modeled using identical scalar quantizers. In this work we study the
implementation of task-based quantization systems with serial scalar
ADCs using DNNs.

In particular, the considered task-based deep quantization system
with scalar ADCs is modeled using the setup depicted in Fig. 1. We
consider the recovery of a vector s ∈ Rk based on an observed
vector x ∈ Rn quantized with up to logM bits. The observed x
is related to s via a conditional probability measure fx|s, which is
assumed to be unknown. The input to the ADC, denoted z ∈ Rp, is
obtained from x using some pre-quantization mapping carried out in
the analog domain. Then, z is quantized using an ADC modeled as p
identical scalar quantizers with resolution M̃ , bM1/pc. The overall
number of bits is p · log M̃ ≤ logM . The ADC output is processed
in the digital domain to obtain the quantized representation ŝ ∈ Rk.

In the following, we implement the pre and post quantization
processings using dedicated DNNs jointly trained in an end-to-end

Fig. 1. Deep scalar quantization system model.

manner. We elaborate on the design of these networks in the following
section. By utilizing DNNs, we expect the resulting system to be able
to approach the optimal achievable distortion for fixed quantization
rate and input size, without requiring knowledge of the underlying
distribution. Such performance is illustrated in the numerical example
presented in Section IV.

III. DEEP SCALAR QUANTIZATION

We now discuss the implementation of the system in Fig. 1
using DNNs. As common in supervised learning, we assume that
a labeled data set is given in advance. The training data consists of
t independent realizations of s and x, denoted {s(i),x(i)}ti=1. It is
emphasized that, in general, the training set may taken from a set of
joint distributions containing the true (unknown) joint distribution of
s and x.

Here, the serial scalar ADC which implements the continuous-to-
discrete mapping is modeled as an activation function between the
two intermediate layers. The system input is the n×1 observed vector
x. By letting θ be a vector representing the tunable parameters of the
DNN and qθ(·) denote the mapping implemented by overall system,
the output is given by the k × 1 vector ŝ = qθ(x). The output ŝ is
used as a representation of the desired vector s.

Since the task of the system is to recover s, the loss function is
the empirical MSE, given by

L(θ) = 1

t

t∑
j=1

∥∥∥s(j) − qθ
(
x(j)

)∥∥∥2
2
. (2)

The network is trained to minimize the loss in (2) using the SGD
optimization algorithm in an end-to-end manner. Specifically, the pre-
qunatization DNN, representing the processing carried out in the
analog domain, is jointly trained with the post-quantization DNN
to minimize the loss in (2).

Note that we use scalar quantization as an intermediate activation
in the system. The non-differentiable nature of such continuous-to-
discrete mappings induces a major challenge in applying SGD in the
presence of such activations. In particular, quantization activation,
which consists of a superposition of step functions, nullifies the gradi-
ent of the cost function. Consequently, straight-forward application of
SGD fails to properly set the pre-quantization network. To overcome
this drawback, we consider two approaches, referred to henceforth as
passing gradient and soft-to-hard quantization.

A. Passing Gradient Quantization
We first present a naive approach which overcomes the fact that,

using SGD, the pre-quantization layers cannot be tunned, by essen-
tially ignoring the presence of quantization during training. Here, the
training algorithm passes the gradient value through the quantization
activation layer. An illustration of this approach is depicted in Fig.
2(a). We expect the resulting system to obtain poor performance
when non-negligible distortion is induced by the quantizers. In our
numerical study presented in Subsection IV-C, it is illustrated that
this method indeed achieves relatively poor performance, as scalar
quantization induces an error term which cannot be ignored. It is
therefore desirable to formulate a network structure which properly
accounts for the presence of the scalar quantizers during training.

B. Soft-to-Hard Quantization
The second approach to deal with the described problem is based

on approximating the non-differentiable quantization mapping by a
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differentiable one. Here, we replace the continuous-to-discrete map-
ping with a non-linear activation function which has approximately
the same behavior as the quantization function. Specifically, we use
a sum of shifted hyperbolic tangents, as such functions are known to
closely resemble step functions in the presence of large magnitude
inputs. The resulting scalar quantization mapping is given by:

q̃M̃ (x) =

M̃−1∑
i=1

ai tanh (ci · x− bi) , (3)

where {ai, bi, ci} are a set of real-valued parameters. Note that as
the parameters {ci} increase, the corresponding hyperbolic tangents
approach step functions. Since we use a differentiable activation to
approximate a set of non-differentiable functions, as in [7], we refer
to this method soft-to-hard quantization.

In addition to learning the DNN weights, here we let the DNN
also learn its activation function, and particularly, the best suitable
constants {ai} (the amplitudes) and {bi} (the shifts). These tun-
able parameters are later used to determine the decision regions
of the resulting scalar quantizer. The parameters {ci}, which es-
sentially control the resemblance of (3) to an actual continuous-
to-discrete mapping, can be either fixed, or alternatively, modified
using annealing-based optimization [19], where {ci} are manually
increased during training. The proposed optimization is achieved by
manually defining these parameters as part of the network parameters.
Due to the differentiability of (3), one can apply standard SGD to
optimize the overall network parameters.

Once training is concluded, we replace the learned q̃M̃ (x) activa-
tion with a scalar quantizer whose decision regions are dictated by the
tunable parameters {ai, bi}. In particular, since tanh(c·x−b) = 0 for
x = b

c
, we use the set

{
bi
ci

}
to determine the decision region of the

quantizer, and use the value of q̃M̃ (x) at each decision region center
as its corresponding representation level. Without loss of generality,
we assume that b0

c0
≤ b1

c1
≤ . . . ≤

b
M̃−1

c
M̃−1

. The resulting quantizer is
given by

Q1
M̃ (x) =


−
∑M̃−1
i=1 ai x ≤ b0

c0

q̃M̃

(
bi
ci

+
bi+1
ci+1

2

)
bi
ci
< x ≤ bi+1

ci+1∑M̃−1
i=1 ai

b
M̃−1

c
M̃−1

< x.

(4)

In the simulations presented in Subsection IV-C, it is illustrated that
the proposed method, which is capable of accounting for the presence
of scalar quantizers during training, can approach the performance
of the optimal task-based quantizer with scalar ADCs of [5], which
requires complete knowledge of the underlying model, in a MIMO
channel estimation scenario.

IV. APPLICATION TO MIMO CHANNEL ESTIMATION

In the following we apply our proposed deep task-based quantizer
for channel estimation in multi-user MIMO communications. We
first formulate the setup in Subsection IV-A. Then, in Subsection
IV-B, we discuss the theoretical performance bounds. Finally, in
Subsection IV-C, we numerically compare the achievable distortion
of our proposed system to the performance of previously proposed
systems as well as to the fundamental performance limits.

A. MIMO Channel Estimation
The problem of MIMO channel estimation with low resolution

quantization is the focus of many recent works, including, e.g., [14]–
[16]. We consider channel estimation in a single cell baseband multi-
user MIMO system, in which nu single antenna users are served by a
base station (BS) with nt antennas. Channel estimation is carried out
in a time diversity duplexing manner using orthogonal pilot sequences

x
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Fig. 2. Task-based deep quantization architectures

of length τp ≥ nu with SNR P . Let Φ ∈ Cτp×nu denote the known
pilot sequence matrix, where the orthogonality of the pilots implies
that ΦHΦ = τp · Inu . Additionally, let h ∈ Cnu·nt be a random
vector whose entires are the i.i.d. zero-mean unit-variance complex
normal channel coefficients, and w ∈ Cτp·nt be a random vector
with i.i.d. zero-mean unit-variance complex normal entries mutually
independent of h, representing the additive noise at the BS. The
observed signal y ∈ Cτp·nt , used by the BS to estimate h, can be
written as [15, Eq. (4)]:

y =
√
P (Φ⊗ Int)h+w. (5)

To put the setup in (5) in the framework of our problem formula-
tion, which considers real-valued signals, we write the observations
as x =

[
Re (y)T , Im (y)T

]T and the unknown channel as s =[
Re (h)T , Im (h)T

]T . Consequently, the number of measurements
is n = 2·τp ·nt, the number of unknown parameters is k = 2·nu ·nt,
and their ratio is ρ =

τp
nu
≥ 1. The performance measure for

evaluating quantization systems here is the average MSE, namely,
η = 1

k
E
{
‖s−ŝ‖2

}
.

B. Theoretical Performance
As a basis for comparison, we review the fundamental performance

limits for this setup dictated by indirect rate-distortion theory. To
formulate these limits, note that it follows from (5) that: 1) s and
x are zero-mean jointly Gaussian random vectors; 2) the covariance
matrix of x can be written as Σx ⊗ Int , with

Σx =
1

2

[
Re
(
P ·ΦΦH + Iτp

)
,−Im

(
P ·ΦΦH + Iτp

)
Im
(
P ·ΦΦH + Iτp

)
, Re

(
P ·ΦΦH + Iτp

) ] ;
and 3) the minimum mean-squared error (MMSE) estimate of s from
x is s̃ , E{s|x} = Γx = (Γ⊗ Int)x, where

Γ =

√
P

1 + P · τp

[
Re
(
ΦH
)
,−Im

(
ΦH
)

Im
(
ΦH
)
, Re

(
ΦH
) ] . (6)

The covariance of the MMSE estimate s̃ is therefore given by(
ΓΣxΓ

T⊗Int

)
=

P ·τp
2(1+P ·τp) (I2nu ⊗ Int), thus the entries of s̃ are

i.i.d. zero-mean Gaussian random variables with variance P ·τp
2(1+P ·τp) .

Based on the above, the average MMSE, which is the optimal
performance achievable with no quantization constraints, is given
by η̃ = 1

2(1+P ·τp) . In the presence of quantization constraints, the
optimal approach is to quantize the MMSE estimate [18], and the
resulting average distortion is obtained from rate-distortion theory
[3, Ch. 10.3] as

ηopt = η̃ +
P · τp

2(1 + P · τp)
2−2ρ·R. (7)
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Fig. 3. Soft-to-hard quantization rule illustration.

Note that ηopt is achievable using optimal vector quantization in
the limit nt →∞. For finite nt and scalar quantizers, (7) serves as
a lower bound on the achievable performance. We thus refer to ηopt
as the fundamental performance limit.

C. Numerical Study
We now numerically evaluate our proposed deep task-based quan-

tizers detailed in Section III in a MIMO channel estimation setup. The
numerical performance is compared to the fundamental performance
limit in (7), as well as to the performance of the task-based quantizer
with scalar uniform ADCs designed in [5], denoted ηsc, which is
optimal in scenarios where the MMSE estimate is linear. It is noted
that while our proposed system can modify the quantization regions,
the model of [5] assumes fixed uniform quantizers. Consequently,
the average MSE of the system of [5] does not necessarily lower
bound the performance of our proposed system. We also note that
the system of [5] requires full knowledge of the underlying statistical
model.

We simulate a multi-user MIMO network in which a BS equipped
with nt = 10 antennas serves nu = 4 users. We set the SNR to
be P = 4 and the number of pilots to τp = 12. As in [15], we
fix the pilots matrix Φ to be the first nu columns of the τp × τp
discrete Fourier transform matrix. In the implementation the deep
quantizers, we set the pre and post quantization DNNs to consist of
linear layers. The motivation for using linear layers stems from the
fact that for the considered setup, the MMSE estimate is a linear
function of the observations. Following [5, Cor. 1], we evaluate the
average MSE of our proposed systems with p = k quantizers. We
consider two training sets, both of size t = 215: In the first training
set, representing optimal training, the realizations {s(i),x(i)}ti=1 are
sampled from the true joint distribution of s,x; In the second training
set, representing SNR uncertainty, {s(i),x(i)}ti=1 are sampled from
the joint distribution of s,x with different values of P , uniformly
randomized over the set [1, 10] for each realization. We use an SGD
optimizer with momentum 0.5 and learning rate decaying factor of
0.7. In the passing gradient method we use uniform codebook under
the dynamic range zik ∈ [−3, 3] for each i, k. In the soft-to-hard
method we randomize the initial values of {ai} , {bi} from a standard
normal distribution. The parameters {ci} are fixed to ci = 5 for each
i ∈ {1, . . . , p}. At the end of the training session, we fix the quantizer
to implement the continuous-to-discrete rule in (4). An illustration of
such mapping is depicted in Fig. 3, where the dashed smooth curve
represents the differentiable function after training is concluded, and
the straight curve is the resulting scalar quantizer. We numerically
evaluate the generalization error of our proposed deep quantizers
using 210 realizations.

In Fig. 4 we depict the resulting performance versus the quantiza-
tion rate R = 1

n
logM in the range R ∈ [0.33, 1.4]. The empirical

performance is compared to the theoretical measures, representing
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Fig. 4. Numerical results versus theoretical measures.

the MMSE, the fundamental performance limits of channel estimation
from quantized measurements (7), and the performance of the optimal
task-based quantizer with scalar ADCs [5]. Since [5] requires perfect
knowledge of the underlying model, which may not be available in
practice, we also consider the case where [5] utilizes an estimation of
P corrupted by zero-mean Gaussian noise with variance P

4
. Further-

more, we also compute the average MSE of the BLMMSE estimator
proposed in [15] via [15, Eq. (15)]. Since the BLMMSE estimator
quantizes the observed signal without analog pre-processing, it is
applicable only for R ≥ 1.

Observing Fig. 4, we note the gap in performance between the
two considered training methods. While the passing gradient fails to
approach optimal result, the performance of our soft-to-hard deep
quantizer is within a small gap of the fundamental performance
limits. Furthermore, the fact that the soft-to-hard method is not
restricted to uniform quantizers allows it to outperform ηsc, especially
in lower quantization rates. Finally, we note that in the presence
of SNR uncertainty, the performance of the soft-to-hard method is
similar to ηsc with noisy SNR estimate, and that both outperform
the BLMMSE estimator of [15]. This indicates that our proposed
scheme is applicable also when the training data is not generated from
the exact same distribution as the test data. Our results demonstrate
that feasible and optimal-approaching quantization systems can be
implemented using DNNs in practical communications setups.

V. CONCLUSIONS

In this work we designed task-based quantization systems, operat-
ing with serial scalar ADCs, using DNNs. We studied two methods
for handling the non-differentiability of quantization. Our numerical
results, which considered MIMO channel estimation, demonstrated
that even for a very simple network structure, the performance
achievable with our proposed soft-to-hard method for training the
network is comparable with the fundamental limits for this setup,
achievable using optimal vector quantizers.
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