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ABSTRACT

The problem of estimating the number of sources and their
angles of arrival from a single antenna array observation has
been an active area of research in the signal processing com-
munity for the last few decades. When the number of sources
is large, the maximum likelihood estimator is intractable due
to its very high complexity, and therefore alternative signal
processing methods have been developed with some perfor-
mance loss. In this paper, we apply a deep neural network
(DNN) approach to the problem and analyze its advantages
with respect to signal processing algorithms. We show that an
appropriate designed network can attain the maximum likeli-
hood performance with feasible complexity and outperform
other feasible signal processing estimation methods over var-
ious signal to noise ratios and array response inaccuracies.

Index Terms— Angle of arrival, deep neural networks,
model order determination, single snapshot

1. INTRODUCTION

Estimating the angles of arrival (AOAs) of an unknown num-
ber of multiple sources transmitting unknown signals is a
challenging problem with various applications such as local-
ization, radar, sonar, anti-jamming and wireless communi-
cation, and has been an active area of research in the signal
processing community for the last few decades [1].

The maximum likelihood (ML) AOA estimator for a sin-
gle source is the angle of the Bartlett beamformer peak [2].
In case the number of sources is unknown, an initial step of
model order determination is required in order to formulate
the ML-AOA estimator [2]. The model order can be estimated
by MDL and AIC methods [3]. However, both require mul-
tiple realizations (snapshots). Furthermore, even for a known
number of sources, the computational complexity of ML es-
timation grows exponentially with this number. When the
number of sources is more than two and the range of possible
angles is wide (large search grid) the ML complexity is ex-
tremely high and hence it is impractical for implementation.

Applying the Bartlett beamforming for estimating mul-
tiple angles of arrival results in significantly inferior perfor-
mance compared to ML since it suffers from a large bias and

even fails to resolve sources when their angles are closer than
the beamforming 3 dB width. Various iterative approximate
ML estimators have been proposed with reduced complex-
ity, such as alternating projections (AP) [4], IQML [5], EM
[6], and Orthogonal Matching Pursuit (OMP) [7]. Super-
resolution methods, such as MUSIC [8], ESPRIT [9], and
MVDR [10], have been also applied for AOAs estimation.
These methods rely on having multiple independent realiza-
tions of sources. However, in many cases there is only a sin-
gle realization from which the AOAs need to be estimated,
for example when sources and/or receivers are moving. In the
special case of uniform linear arrays (ULAs), it is possible to
create virtual realizations using spatial smoothing [11]. Yet,
this technique is effective mainly in high signal to noise ration
(SNR), and also inherently shortens the array aperture, which
in turn reduces its angular resolution and accuracy.

Estimating the AOAs with machine learning methods is
an alternative to signal processing methods. The pioneering
works [12]-[14] demonstrated DOA estimation with Hopfield
neural networks. These were networks with a single hidden
layer and relatively small number of neurons. Southall et.
al. [15] applied a larger neural network with three hidden
layers to estimate the DOA of a single source and showed a
performance advantage with respect to DOA estimation with
monopulse. Other more recent works [16]-[19] have applied
deep neural networks (DNNs) for estimating acoustic sources
direction/position from a large number of realizations of mi-
crophones array. It was shown that neural networks attain rel-
atively good accuracy compared to MUSIC [8] in challenging
acoustic room environment conditions, such as reverberations
and high noise.

In this paper, we apply a DNN to estimate the number of
sources and their angles of arrival based on a single realiza-
tion, and analyze the DNN advantages with respect to various
signal processing methods, including the ML estimator and
its approximation by the prominent AP algorithm [4]. The
first contribution of this paper is to show that in the case of
a known number of multiple sources the DNN is a practical
AOAs estimator that can attain the intractable ML estimator
performance, and outperforms other leading practical signal
processing methods. The second contribution is to show that
for single snapshot the accuracy of the DNN model order esti-
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mation is significantly better than the classical MDL and AIC
methods, that require the use of spatial smoothing in this case.

2. SYSTEM MODEL

We consider an array of N antenna elements linearly spaced
that are receiving signals from multiple point sources at dif-
ferent angles. It is assumed that these sources have relatively
narrow band and are at far-field, thus the received array signal
can be expressed by

y =

M−1∑
m=0

a(θm)sm + v, (1)

where v is the noise vector,M is the number of sources (num-
ber of angles of arrival), m is the source index, sm and θm are
the unknown deterministic complex signal coefficient and the
angle of the m-th source, respectively, and

a(θ) =

 e
j2π
λ x1sin(θ)

:

e
j2π
λ xNsin(θ)

 , (2)

is a steering vector for an angle of arrival θ, where λ is the
wavelength, and xn is the n-th antenna position with respect
to the linear array center point. The number of sources, M ,
and their angles θ0, .., θM−1 are unknown and are estimated
based on a single array realization (snapshot) with a neural
network as described in the next section.

3. DNN MULTI-SOURCE AOA ESTIMATION

The DNN architecture that was used to estimate the number
of sources and their angles-of-arrival is depicted in Fig.1. The
DNN was designed for an array of 16 antennas (N = 16)
uniformly spaced with λ/2 spacing, and for estimating up
to 4 sources (M ≤ 4). It is straight forward to modify the
same DNN architecture for other system configurations, such
as non-uniform spacing, different number of antennas, and
different number of possible sources.

The input to the network is the array received signal of
2N values, which are the real and imaginary components of
the array response. Following the input layer there are 8 fully
connected layers, each followed by batch normalization [20]
and ReLU nonlinearity. The number of neurons in each layer
is shown in Fig.1. The network has 14 outputs, which are
related to five different groups, as described in the following.

The first group is the classification of the number of
sources, and includes four outputs, each representing the
probability of the number of sources between 1-4. The clas-
sification output decision is the index of the maximal proba-
bility output. The loss function of the classification was the
cross entropy after softmax. The other four groups of outputs

Fig. 1. The neural network architecture with 8 hidden fully
connected (FC) layers, followed by classification (softmax +
cross entropy loss) of the number of sources (1-4), and AOAs
regression for each one of the classes.

are the angles of arrival estimations for each of the four clas-
sification options. The angle estimation loss function for each
of these groups was the squared root of the mean square error
(RMSE) between the true sources angles and their closest
estimation, which is mathematically expresses by

RMSE =

√√√√E

{
1

M

M∑
m=0

min
k

{
(θ̂k − θm)2

}}
, (3)

where θm, and θ̂k are the true and estimated angle of arrivals,
respectively, and k ∈ 0, 1..M − 1. During training, for each
example only the RMSE of the true number of classes was
considered.

The network parameters were trained and tested using
simulated data according to the system model described in
Section 2. The network was trained with stochastic gradi-
ent descent with momentum, where each descent iteration
included a batch of 4000 realizations from different number
of sources and different SNR values, and also different signal
coefficients, sm.

The network described above attained best performance
with respect to other architectures that were tested as well,
including a convolutional network (ConvNet), and a fully
connected network with smaller number of layers or smaller
number of neurons per layer. A fully connected network with
a dense net architecture [21] was also tested, and showed
comparable results to the network in Fig.1. The performance
comparison of different network architectures is presented in
Section 4.

3.1. Complexity analysis

As mentioned in Section 1, a major practical limitation of
the ML estimator of multiple sources AOAs (formulation can
be found in [2]) is its very high computational complexity.
Therefore, we evaluate next the complexity of the proposed
DNN estimator and compare it to the complexity of the ML
estimator and also to the AP estimator [4], which as described
in Section 1 is a low complexity approximation of the ML.
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During the deployment stage (after learning the network
parameters), the complexity of the DNN in Fig.1 is given by
the number of neurons, which is mainly governed by the layer
with 2048 neurons, hence the complexity of the DNN is given
by O(20482) = O(4.196). The complexity of the ML esti-
mator is O((N2 +M3) ∗PM ), and the complexity of the AP
estimator is O(N2 ∗ P ∗K), where P is the number of angle
search grid points, and K is the number of AP iterations.

Let us consider the following example for comparison.
For a 50 degrees filed-of-view and a grid spacing of 0.1 de-
gree, we have that P=50/0.1=500, and the complexity of the
ML estimator is 3.213. For the same case, the complexity
of the AP with 10 iterations (which were necessary to get to
good performance as shown in Section 4) isO(106). It is real-
ized that the DNN has similar complexity to the AP and both
methods have 7 order of magnitude lower complexity than the
ML estimator. The significant lower complexity makes both
DNN and AP much more practical estimators than the ML.
We also note that the DNN is much faster than AP when exe-
cuted on GPUs.

4. RESULTS AND DISCUSSION

We first compared the AOAs estimation of the DNN described
in Section 3 with the ML estimator for two sources with equal
gains from a single array realization (snapshot). In this case
the ML estimator still has feasible complexity and hence can
be tested in a reasonable runtime. Fig. 2 presents the RMSE
results of both estimators, where the RMSE calculation is
given in (3), with M = 2. The results show that the DNN
AOA estimator attains the RMSE performance of the ML over
a broad range of SNR values. Asymptotically, in high SNR,
the ML attains the CRLB (lower bound) on the AOA estima-
tion RMSE and hence the DNN AOA estimator also attains
the ultimate RMSE performance.

Next, we tested the performance of the DNN AOAs es-
timation of four sources from a single array realization. In
this case, the number of sources was known, but their angles
of arrival were unknown and uniformly distributed within a
filed of view (FOV) of 50 degrees. The complex coefficients
of each source, sm, in (1) had random phase uniformly dis-
tributed in the range of [0, 2π], and random amplitudes uni-
formly distributed in the range of [0.5, 1.5]. In the case of
four sources the complexity of the ML estimator is too high,
and its runtime is unfeasible. Hence we compare the RMSE
of the DNN AOA estimation to three prominent signal pro-
cessing algorithms: AP [4], MUSIC [8], and OMP [7]. For
MUSIC, in the absence of multiple array realizations, we ap-
plied first a spatial smoothing step [11], where the 16 element
ULA were partitioned into 9 overlapping sub-arrays (equiva-
lent to 9 snapshots), each consisted of 8 elements. This choice
was obtained empirically, for best performance. The results
are presented in Fig. 3. The DNN has a performance advan-
tage over all reference methods. It reaches an RMSE less than

Fig. 2. DNN vs. maximum likelihood AOA estimation per-
formance of two sources in the FOV of 20 degrees
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Fig. 3. AOA estimation performance for four sources in the
FOV of 50 degrees

0.5 degrees which is very low considering the relatively large
3dB beamwidth of the array, which is 10 degrees.

We have also tested the performance of the proposed fully
connected (FC) DNN in Fig. 1 with three other networks:
a ConvNet with 8 layers + FC layer, a shorter FC network
with only 6 hidden layers, and a thinner FC network with 8
hidden layers and smaller number of channels (obtained by
limiting the number of channels per layer to 400). The re-
sults presented in Fig. 4 show that the network in Fig. 1 at-
tains best performance. The ConvNet has noticeable degraded
performance compared to the fully connected network. Fur-
thermore, shortening the depth of the network causes some
degradation, while reducing the number of channels results
in minor degradation. We have also tested a fully connected
network in a dense net architecture [21], where each layer
receives the accumulated inputs of all previous layers, and
observed similar performance as the network in Fig. 1.

Next, we examined the robustness of the DNN to model
errors, which often occur in practical systems. The model
errors were obtained by feeding the DNN the vector Hy in-
stead of y, where H is a mismatch matrix that is unknown
to the estimator. The diagonal of H had unit amplitude and
Gaussian phase offsets with standard deviation denoted by σθ,
representing phase offsets between the antenna channels. The
off-diagonal elements of H modeled the cross talk between
the channels by having complex Gaussian random variables
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Fig. 4. AOA estimation performance of different network ar-
chitectures for four sources.

with an amplitude attenuation factor of Γ below unity (below
the diagonal amplitude). We have tested two levels of impair-
ment: medium impairments with σθ = 5◦, Γ = 30dB and
high impairments where σθ = 10◦, and Γ = 20dB. The
effect of these impairments on the array response is demon-
strated in Fig. 5 by comparing the array Bartlett beamformer
for the case with and without impairments. The DNN and
AP AOAs estimation performance for four sources with two
levels of impairments is shown in Fig. 6. As expected, the
performance of both the DNN and AP is degraded compared
to Fig. 3. However, in the case of high mismatch the DNNs
performance advantage over AP is even larger than the case
without mismatch. Meaning that the DNN is relatively robust
to model errors, although it was not trained with model errors.
A possible explanation is that the DNN was trained with ef-
fective regularization due to the very large number of diverse
examples with different AOAs and various SNR values.

Finally, we tested the performance of the DNN number
of sources estimation from a single array realization (classi-
fication performance). In this test, for each received signal
the number of sources was randomly chosen from a uniform
distribution between 1-4. We compared the DNN with two
prominent signal processing alternatives, MDL and AIC [3],
and limited their results to 1-4. These methods require mul-
tiple realizations, hence we applied an initial spatial smooth-
ing step that generated 9 virtual realizations, as mentioned
above for the implementation of MUSIC. Fig. 7 presents the
probability of accurate estimation of the number of sources
vs. the SNR. It is realized that the DNN accuracy is signifi-
cantly better than the reference methods. The DNN reaches
0.9 probability of accuracy in high SNR, while the best refer-
ence method attains only 0.72. We have observed that most
of the DNN classification errors occurred when two or more
of the true source angles of arrival were randomly chosen to
be very close. In this case the classifier falsely detected the
close sources as a single source, and as a result the number of
estimated sources was smaller than the true value.
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Fig. 5. Beampattern (Bartlett beamformer spectrum) for dif-
ferent levels of impairments
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Fig. 6. AOA estimation performance for four sources in the
FOV of 50 degrees, for different levels of impairments
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5. CONCLUSIONS

We have shown that the DNN approach for estimating the
number of sources and their AOAs from a single realization
has several advantages over signal processing methods. For
AOA estimation, the DNN reaches ML performance with sig-
nificantly lower complexity and unlike the ML it is feasi-
ble for implementation even when the number of sources is
large. Furthermore, the DNN also outperforms leading signal
processing methods with feasible complexity (alternatives to
the ML), such as AP, MUSIC, and OMP. For model order
estimation (from a single snapshot), the DNN significantly
outperforms the prominent MDL and AIC methods. It was
also shown that the DNN is relatively robust to imperfectness
(mismatch) in the array response.
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