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Abstract—Understanding the neural processing of natural
speech processing is an important first step for designing
Brain-Computer Interface (BCI) based speech enhancement
and speech recognition systems. Complex neural signals like
electroencephalography (EEG) are time-varying and has a non-
linear relationship with continuous speech. Linear models can
decode stimulus features reliably, but the correlation between
the reconstructed signal and continuous EEG remain low despite
attempts at optimization. In the current application, we demon-
strate the utility of a Recurrent Neural Networks (RNN) model to
relate various stimuli features such as the envelope, spectrogram
to the continuous EEG in a cocktail party scenario. We use a
Long Short-Term Memory (LSTM) neural network architecture
that has self-connecting loops which help in preserving past
information to predict future value. Given that predictability
plays a critical role in speech comprehension, we posit that such
a neural network architecture yield better results. In attended
condition, for native participants, the LSTM models yield 30%
and 22% mean correlation improvement and for non-native
participants, 43% and 37 % improvement over linear models for
envelope and spectrogram respectively with EEG. Finally, we
have trained a single model to predict the native language of a
participant using EEG and it yielded 95% accuracy.

Index Terms—Neural Signal Processing, Speech enhancement,
EEG, RNN

I. INTRODUCTION

Developing a Brain-Computer Interface based speech en-
hancement or speech recognition system for a cocktail party
scenario with multiple speakers and noise sources requires a
thorough understanding of the neural processing of continuous
speech and robust algorithm. A cocktail party scenario is
where a person tries to focus on a single speaker among
multiple speakers and noise sources. Wherein, the BCI would
enhance the speech of the single speaker which would help
in better understanding for the listener and provide a robust
signal for a speech recognition system. Previous studies have
shown that it is possible to perform auditory attention detection
i.e., identification of the target speaker, using EEG. For this
purpose, the non-invasive EEG signal with a low signal-to-
noise ratio is used in the BCI system. The stimuli that is,
speech signal is converted to envelope [1] [2] or spectrogram
[3] by signal processing. The models are then trained to predict
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the stimuli signal from EEG. In previous studies, extensive
analysis of linear models based on multivariate Temporal
Response Function(mTRF) by Crosse, et. al[3] has been done.
However, due to the non-linearity of EEG signal, despite
best efforts, the correlation between the reconstructed stimuli
from the EEG and the actual stimuli remains low. A recent
study also used Machine Learning methods[4] with non-linear
models to generate the reconstructed envelope signal from
EEG. After extensive hyperparameter tuning, they reached
seven times higher than the linear baseline in identifying
the target speaker. There was also another study where they
decoded the target speaker without access to the clean source
using Deep Neural Network architecture [6]. This system
required long hours of training and access to clean sources
during the training phase of the neural networks to identify
the target speaker.

In this paper, we are presenting an algorithm for improve-
ment in correlation among the original and reconstructed
stimuli using LSTM [7] based RNN architecture and shown
that using non-linear models, the correlation improvements are
significant and this can be further used in speech enhancement
[8] and speech recognition system. Also, we have shown
results for native and non-native participants and the algorithm
we have developed could be used universally despite the
difference in native languages of a participant as long as
the language of the stimuli is the same. Finally, we have
developed a single model to identify the native language of the
participant using their EEG data which could help in Natural
Language understanding with a prior knowledge about the
native language without explicitly mentioning.

II. MATERIALS AND METHODS
A. Data

There were a total of 15 native English speakers and 14
non-native, Mandarin Chinese speakers in the study. All par-
ticipants self-reported no previous history of hearing problems
or neurological disorders. Each participant provided written,
informed consent and received monetary compensation for
their participation. The experimental protocol was approved
by the Institutional Review Board at The University of Texas
at Austin.
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The 62-channel EEG data were collected from each partici-
pant. The sampling rate of the collected data was 25kHz with
the reference as the average of the two mastoid electrodes.
They were subjected to two conditions. The story and tone
condition. In the story condition, the participants were asked
to pay attention to the story and ignore the tone. In the tone
condition, the participants were asked to pay attention to the
tone and ignore the story. However, the discrete tone stimulus
was meaningful with frequency and duration deviation. They
were also asked multiple choice questions to identify if they
paid attention subjectively after every session. Each session
lasted 1 minute and there were totally 30 sessions for each
condition.

B. Stimulus signal processing

The envelope data of the speech stimuli was generated by
applying Hilbert transform, then taking the absolute value.
Followed by applying a zero-phase shift anti-aliasing filter.
The signal was downsampled to 128Hz.

The 16-channel spectrogram data was generated by using
band filters between the range of 300Hz to 8000Hz, Short
Time Fourier Transform and the resulting signal was down-
sampled to 128Hz.

The sampling frequency of 128Hz was chosen for the
computational efficiency of the algorithm.

C. Linear Model: mTRF

The mTRF based on linear regression with regularization
models were developed using the MATLAB toolbox[3]. The
ridge parameter for regularization was chosen from 1.0e-
1 to 1.0e+5. The time window was chosen from -50ms to
250ms. The EEG signal was downsampled to 128Hz. The
stimulus signal was preprocessed to remove ocular artifacts
using Independent Component Analysis [9]. Using the mTRF
toolbox, leave-one-out cross-validation was performed on the
stimuli and EEG for the range of ridge parameter values. The
reconstructed stimuli and the actual stimuli were correlated to
obtain the Pearson’s r correlation coefficient which gives the
linear dependency between the two signals. Where Pearson’s
1 correlation is given by equation 1. cov stands for covariance
and SD represents standard deviation.

~ Cov(X,Y) 1
- SD,SD, (1)

During training, the model received the EEG related to story
and tone. In the testing phase, the model receives the EEG
related to story or tone and would predict the corresponding
stimuli. In the story condition, i.e., attended condition, if the
participant paid attention to the story, predicted stimuli of the
story should have a higher correlation with the original stimuli
of the story compared to the predicted tone. This establishes
a baseline in identifying if the participant was concentrating
on the story and hence would result with a lower correlation
if the participant paid attention to the tone.

The toolbox returns the correlation value across the ridge
parameter values. We have chosen the ridge parameter corre-
sponding to the maximum correlation obtained for the story

and tone condition. Hence, the information captured by various
ridge parameters are used efficiently. For the spectrogram
condition, the model returns correlation across various spec-
trogram channels and ridge parameter values. Hence, the
average across spectrogram channels are taken followed by
the maximum correlation among ridge parameters was chosen
as the final correlation value.

D. LSTM based Recurrent Neural Networks Model

The RNN model was developed using Keras API, python.
The EEG data were normalized. Also, principle component
analysis [10] on the EEG data were done in order to decorre-
late the EEG channels. Previous studies have shown that the
data given to a neural network should be uncorrelated [11]. If
two of the inputs are correlated, the neural network weights
for e.g. W; and W5 should solve simultaneously to reduce the
loss function. Therefore, in this study, we have taken the PCA
of individual channels in the EEG data. The train and test split
was chosen as 80% and 20% randomly.

The envelope model is a sequential model with a single
LSTM layer with 100 cells followed by a dense layer to obtain
a single channel output. The loss is calculated as the mean
absolute loss [12] with adam [13] optimization. The model
was trained up to 1000 epochs with a batch size of 72.

The spectrogram model is also a sequential model with
two LSTM layers with 100 cells each followed by a dense
layer to obtain the 16-channel output. The loss is calculated
as mean absolute loss with adam optimization just like the
envelope model. Spectrogram model was trained up to 500
epochs with a batch size of 52. The decreased batch size
was to compensate for the increased model complexity due
to the additional LSTM layer. This model reconstructs a 16-
channel spectrogram data. The channels were individually
correlated with the original spectrogram channels and the
average of channel correlation was computed to obtain the
final correlation.

Pa = p(eorig—sa ep'r‘ed—s) (2)

Equation 2 is the correlation of original envelope of the story
with the predicted envelope of the story.

Pu = p(eorigfsﬂ ePT‘fd*t) (3)

Equation 3 corresponds to the correlation of original en-
velope of the story with the predicted envelope of the tone.
Auditory attention detection [15] [16] is performed when p,
is greater than p,. This indicates that the participant paid
attention to the story and ignored the tone during the story
condition. Also, the participant paid attention to the tone and
ignored the story during the tone condition.

E. Model to classify the native language of a participant

Finally, we have developed a single LSTM based RNN
model to classify the the native language of a participant. We
appended the 14 native and non-native participant’s story con-
dition where, they paid attention to the story. We normalized
the data and applied principal component analysis to obtain
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features that were linearly uncorrelated and retained all the 62
principal components. The model was developed with 3 layers
of LSTM, each having 200,100 and 50 units respectively,
followed by a dense layer. The train and test split was set
to 70% and 30%.

III. RESULTS

The mean correlation is the average of the pearson’s r
obtained for each class of participants, native and non-native.
We have also performed "Paired Two Samples for Means t-
test” [17].

A. Native participants

The Table I shows the correlation for predicted story stimuli
with original stimuli in attended condition for the envelope and
spectrogram features.

For native participants, the mean correlation for the envelope
in mTRF was 0.153 and RNN was 0.199. Hence, the mean
correlation improvement of 30%. Similarly, for spectrogram,
mTRF was 0.074 and RNN was 0.091, resulting in 22%
improvement. The mean correlation is shown in figure 1.
From the results, for few participants, the mTRF model
performed better than RNN and the reason could be, for these
participants, the linear functions in the linear model could
fit the data better and has a better performance only these
participant. However, the RNN model is generalized and it is
able to a give good overall performance for almost all subjects.
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Fig. 1. Native: Mean correlation for predicted and actual stimuli

B. Non-native participants

The table II is the pearson’s r correlation value for attended
condition in non-native participants. The mean correlation for
the envelope in RNN was 0.210 compared to mTRF at 0.147.
This resulted in 43% improvement. Similarly, for spectrogram,
RNN was 0.103 and mTRF was at 0.075, leading to 37%
improvement. The mean correlation is shown in figure 2.
Similar to the native case, few participants in non-native has a
higher correlation with the linear mTRF model. However, as
stated earlier for the native case, the RNN model is generalized
and produces better results across participants. Also, overall

TABLE I
NATIVE ENVELOPE, SPECTROGRAM CORRELATION

Participants || mTRF RNN mTRF RNN
envelope | envelope Spectro- Spectro-

gram gram
1 0.1664 0.1626 0.0809 0.0699
2 0.1685 0.1761 0.0779 0.0796
3 0.1296 0.2295 0.0561 0.1126
4 0.1378 0.1461 0.0578 0.0596
5 0.2070 0.1160 0.1047 0.0387
6 0.1330 0.1460 0.0621 0.0664
7 0.1149 0.2786 0.0606 0.1468
8 0.1878 0.2439 0.0903 0.1111
9 0.1422 0.2037 0.0711 0.0823
10 0.1630 0.1990 0.0820 0.0978
11 0.1113 0.2292 0.0542 0.1088
12 0.1296 0.2284 0.0696 0.1075
13 0.1415 0.2716 0.0705 0.1513
14 0.1846 0.1671 0.0959 0.0855
15 0.1770 0.1920 0.0873 0.0595

performance of the RNN yields better correlation with the
stimuli compared to linear models.
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Fig. 2. Non-native: Mean correlation for predicted and actual stimuli

C. Performance analysis of the RNN Models

In the above mentioned neural network architecture, we
observed that higher the training epochs, the better the pre-
dicted stimuli’s correlation. In order to perform a thorough
analysis of the network’s output, we trained the Envelope
model up to 1000 epochs and recorded the correlation for every
100 epochs of training. Similarly, we trained the spectrogram
model for 500 epochs and recorded the correlation for every 50
epochs. We observed that for envelope model, even at 1000
epochs the performance was not saturated and we obtained
the best results for 1000 epochs. Whereas, in the spectrogram
model, the performance started to degrade around 250 epochs
indicating that the network was overfitted. This analysis helped
in determining the ideal number of training epochs to be
chosen for a given model. The change of correlation with the
increase in epochs are shown in Figure 4.
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TABLE II
NON-NATIVE ENVELOPE, SPECTROGRAM CORRELATION

Participants mTRF RNN mTRF RNN
envelope | envelope Spectro- Spectro-

gram gram
1 0.1379 0.2033 0.0710 0.0937
2 0.1964 0.1322 0.1017 0.0488
3 0.1315 0.1925 0.0771 0.0969
4 0.1053 0.2776 0.0568 0.1436
5 0.1482 0.2447 0.0787 0.1250
6 0.1177 0.2521 0.0620 0.1317
7 0.1330 0.1530 0.0621 0.0663
8 0.1576 0.2568 0.0740 0.1319
9 0.1671 0.2506 0.0834 0.1318
10 0.0986 0.2244 0.0489 0.1109
11 0.1320 0.2331 0.0633 0.1199
12 0.1991 0.1826 0.0986 0.0799
13 0.1635 0.2088 0.0819 0.1005
14 0.1694 0.1343 0.0915 0.0599
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Fig. 3. Envelope Model Analysis

D. Paired Two Samples for Means t-test

We performed ’Paired Two Samples for Means t-test’.
The ’t-test’ is used to compare two averages and determine
if their difference is statistically significant. The test was
performed on attended conditions across native and non-native
participants for envelope and spectrogram features. Due to
multiple hypothesis tests on the same data, the Bonferroni
correction was made by setting the alpha value to 0.025.
All of them exhibited significant score difference except for
the native spectrogram case. We believe this is the case for
native spectrogram case since the mean difference was the
least. However, for envelope preprocessing with the same
dataset, the results are statistically significant indicating that
spectrogram preprocessing with native subjects need more
data.

In native envelope case, RNN (M=0.199, SD=0.002) and
mTRF (M=0.153,SD=0.0008); t(14)=2.68,p<0.01.

In native spectrogram case, RNN (M=0.091, SD=0.001) and
mTRF (M=0.074,SD=0.0002); t(14)=1.57,p<0.06.

In non-native envelope case, RNN (M=0.21,SD=0.14) and
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Fig. 4. Spectrogram Model Analysis

mTRF (M=0.147,SD=0.0009); t(13)=3.5 , p<0.01.

In non-native spectrogram case, RNN (M=0.102,
SD=0.0009) and mTRF(M=0.075,SD=0.0002); t(13)=2.53,
p<0.01.

E. Classification of native language of a participant

The network was trained for 50 epochs where, the training
accuracy converged at 96%, with a binary cross-entropy loss
of 0.0582. The test accuracy was 95% after 50 epochs.

IV. CONCLUSION

Using Long Short Term Based Recurrent Neural Networks,
the mean correlation between the predicted envelope with the
actual envelope has significantly improved for the attended
condition. For native participants, the overall mean corre-
lation improvement for all participants was 30% and 22%
respectively. Also, for non-native participants, the overall mean
correlation improvement for all participants was 43% and
37%. This suggests that non-linear RNN models are capable
of capturing the information in EEG in order to reconstruct
the stimuli signal. Even though the Recurrent Neural Networks
model is complex, for a speech enhancement or speech recog-
nition application, it is important to decode the envelope with
more precision from the EEG data. This study suggests that
for Brain-Computer Interface applications, it would be better
to use a Recurrent Neural Networks based model to process
EEG data and hence develop a speech enhancement or speech
recognition system. Also, the binary classifier based on LSTM
RNN yielded 96% train accuracy and 95% test accuracy in
identifying the native language of the participants from their
EEG data. For the later, as a further study, MFCC features
could be used instead of the envelope and we could try and
directly decode the speech from the EEG data to develop an
unspoken speech recognition system.
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