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ABSTRACT

Kernel-based adaptive filters are sequential learning algo-
rithms, operating on reproducing kernel Hilbert spaces. Their
learning performance is susceptible to the selection of appro-
priate values for kernel bandwidth and learning-rate parame-
ters. Additionally, as these algorithms train the model using a
sequence of input vectors, their computation scales with the
number of samples. We propose a framework that addresses
the previous open challenges of kernel-based adaptive fil-
ters. In contrast to similar methods, our proposal sequentially
optimizes the bandwidth and learning-rate parameters using
stochastic gradient algorithms that maximize the correntropy
function. To remove redundant samples, a sparsification
approach based on dimensionality reduction is introduced.
The framework is validated on both synthetic and real-world
data sets. Results show that our proposal converges to rela-
tively low values of mean-square-error while provides stable
solutions in real-world applications.

Index Terms— Sequential learning, Adaptive learning-
rate, Kernel adaptive filters, Correntropy.

1. IMPLEMENTATION OF KERNEL-BASED
ADAPTIVE FILTERS

Time series prediction techniques have been used in a wide
variety of real-world applications, e.g., financial markets,
electric utility load, weather state, and human emotions,
among others. In practice, the underlying system models and
data generating processes are usually not known, resulting
in a challenge to build accurate and unbiased estimation of
time-series data. The baseline solutions to perform predic-
tion tasks are the statistical methods, mostly employing some
improved versions of regressive models. However, their im-
posed analytic models frequently face numerous restrictions
when dealing with non-stationarities and nonlinearities of
data. To overcome nonlinearities, data-driven approaches are
widely used like Neural Networks (NN), employing one or
more layers of non-linear units to predict outputs. Nonethe-
less, NN algorithms tend to demand long training time and
may get stuck in local minima.
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In this paper, the goal is to learn a continuous input-
output mapping f:/—IR based on a paired sequence of
input-output examples {wi,y1},...,{us, y:}, where u; is
an m-dimensional input vector that belongs to the input set
UCIRR™, and y.€R is the output time series over the time do-
main {€N. Because its ability to model non-linear systems,
the input-output mapping function f can be learned using a
kernel-based adaptive filter, yielding the following sequential
rule through the time domain [1]:

fim {ftl ko (ug, ), VE#0 .
0, t=20

€ =yt — fr—1 (uy) (1b)

where n€R™T is the learning-rate, % (-, -)€R™ is a Mercer
kernel with a bandwidth c€R™ that controls the mapping
smoothness. We propose to optimize both 7 and o by min-
imizing the prediction error €;€IR, using the following stages
of adaptive filter implementation: n€IR™" is the learning-rate,
Ko (-,-)ERT is a Mercer kernel with a bandwidth c€R ™ that
controls the mapping smoothness. We propose to optimize
both 1 and ¢ by minimizing the prediction error ¢;€R, using
the following stages of adaptive filter implementation.

Kernel bandwidth optimization using correntropy:
Based on nonlinear similarity measures, the adaptive filter
parameters are proposed to be optimized using the corren-
tropy cost function expressed over time as follows [2]:

5= argmaxienp (~own)/20)) @)

where AER™ is the correntropy bandwidth that rules simi-
larity between data points. Correntropy generalizes the con-
ventional correlation function to nonlinear spaces, which has
proven useful in many areas such as regression [3], adap-
tive filtering [4], classification [5], and spectral characteriza-
tion [6]. The primary rationale behind the suggested strat-
egy in Eq. (2) is to extract more information from the data
structure for the adaptation process, yielding solutions that
are more accurate for non-Gaussian processes [7]. In the first
optimizing value, we perform the Kernel bandwidth estima-
tion in Eq. (2) using the gradient descent method, yielding the
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learning rule given as:
or = 0¢—1 + B0J; /001 3)

where o is the bandwidth at iteration ¢ and S€IR ™ is the step-
size parameter. Thus, using Egs. (1a), (2) and (3), the kernel
bandwidth estimation results as below:

o = 0p—1 + aneer_1||ug — ut—1||2l€at_1 (we,ue—1) @)

where a=J;3/\%a}_,, and notation ||-|| stands for ¢, norm.

Learning-rate estimation based on correntropy: Like-
wise in Eq. (3), the gradient-descent estimation yields the fol-
lowing learning-rate update at iteration ¢:

Ny = Np—1 + BOJ /O 1 (5)

where SCIR™T is the step-size parameter. Then, considering
Egs. (1a), (2) and (5), the learning-rate update results in the
following rule:

M=n1+ B erer_1ko (W, u 1) (6)

being " = (3 exp(—e2/2)2).
Dimensionality reduction through a sparsification

strategy: In dimensionality reduction tasks, a low-dimensional

representation, V={v;€R":i€[1,t — 1]}, must be obtained
from a provided high-dimensional finite set U={u;cR™:
i€[1,¢ — 1]} that holds m features extracted at ¢t — 1 samples,
under the dimensionality restriction n<m. To this end, given
a training pair {u.,y:} fed at the kernel-based adaptive fil-
ter input, sparsification methods can be employed to decide
whether a new sample u; should be added to a dictionary (that
is, a reduced set of input samples) used to estimate nonlinear
models [8], decreasing the computational complexity.

For encoding all non-linear data relationships within
spaces, therefore, a couple of kernel matrices are intro-
duced: i) input kernel matrix, P€R!~'**~1 that holds
elements p;;=rq, (u;,u;), With ke, :R™xR™—=R*Y; ii)
output kernel, QER!~1**~! with elements ¢;; =, (vi, v;),
Koy :R"XR™R". Both real-valued kernels are assumed
to be Gaussian due to their universal approximating capabil-
ity, desirable smoothness, and numeric stability [1]. So, the
similarity measures of high and low dimensional spaces are
respectively as below:

pij = exp (—[lu; — u;|?/207) (7a)
qij = exp (—|lv; — v;||*/20%) (7b)

where o7, oy €RT are the corresponding kernel sizes.
Therefore, the kernel-based framework is devised so that
the more correctly the points (v; and v;) explain the similar-
ity between the high-dimensional data points (u; and u;), the
more alike the kernel values p;; and g;; become. Thus, the
principal rationale behind the suggested similarity framework

in Egs. (7a) and (7b) is to find a low-dimensional data repre-
sentation V' so that the mismatch between p;; and g;; can be
minimized. So, the following cost function is proposed:
1 . .
C= mﬂ‘:{\Pz‘j*q“‘|/Pij3V1aJ€t*1:J7éZ}7 CeR  (8)
where notation E {-} denotes the expectation operator.
In particular, we suggest to perform the cost function min-
imization using a gradient descent method, yielding the learn-
ing rule described as below:

vf =t — poC/ovk ! 9)

where vF~! is the low-dimensional representation of u; at
iteration k — 1 and u€R™ is the step-size parameter. Relying
on Egs. (7a), (7b) and (8), the gradient update results in the
following rule:

vF=o} /R (vF1—vl) (pijaft—(afh)?)
o pijlpi;—at|

jetd, #z}

where 1= 1/ (0% ((t — 1)-1)).
Consequently, introducing the quantization-size e€IR ™ [9],
the following sparsification strategy is proposed:

1. min
1<i<t—1

weight to w;.

|lvy — v;||<e:  Update the closest sample

2. min |v; — v;||>e: Add the input sample u; to the

1<i<t—1
dictionary.

In terms of embedding preservation, the previous imposed
restraints aim to select only the input data that encodes the
global structures extracted from training samples. Thus, the
main rationale behind the sparse dictionary building is to
hold, as much as possible, those samples, which are more
likely to appear.

2. RESULTS

We validate the proposed kernel-based adaptive framework
in the case of prediction tasks, using the mean-square-error
(MSE) as a measure of performance. At each iteration of
the training set, therefore, the learned filter is used to com-
pute the MSE value on each test set as carried out in [1].
For a comparison purpose, the proposed variable bandwidth,
adaptive learning-rate, and sparsification stretegy are con-
trasted with the following kernel-based adaptive filters: i)
Kernel least-mean-square (noted as KLMS) as the simplest
kernel-based adaptive strategy [10], ii) Quantized kernel
least-mean-square (QKLMS) that introduces an online vec-
tor quantization method into KLMS [9]; iii) Kernel least-
mean-square with variable kernel bandwidth (KLMS-VKS)
described in [11].
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Fig. 1. Performed results by each compared adaptive filter on
tested datasets

The set-up of compared adaptive filters is as follows:
i) the learning-rate is adjusted at n=0.2 for KLMS and
QKLMS, while the initial learning-rate 7; is set at 0 for
KLMS-VKS and our proposal; ii) the Kernel bandwidth is set
at 0=4/1/2 for KLMS and QKLMS, which is also the initial
bandwidth in our proposal and KLMS-VKS i.e., 01=4/1/2;
iii) the quantization size ¢ is set at 0.05 and 0.1 for QKLMS
and our proposal, respectively; iv) the learning rate 3 is set
at 0.1; vii) the correntropy bandwidth is set at A=1; v) In the
dimensionality reduction method, k=1000, n=2, u=0.1 and
oy,oy=0.2. All used kernel parameters had been adjusted
heuristically.

Testing is carried out on the following two benchmarking
datasets used in prediction tasks:

Mackey-Glass chaotic time-series:

Prediction performance is validated on a short-term sig-
nal set, which is generated by a chaotic system whose states

are governed by a set of time-delayed differential equations.
The task is to predict the current value using the previous ten
consecutive samples. As experimented in [1], the data are
normalized for the computation convenience, and for imple-
menting the validation strategy, 500 samples are used as the
training subset, while another 100 consecutive samples are
the test subset.

Fig. 1(a) displays the learning curves, plotting the mean-
square-error results performed by each compared solution
versus the number of iterations. As seen, KLMS and KLMS-
VKS methods show a relatively good performance since they
achieve more stable MSE values through iterations. However,
the evolution curves of network size in Fig. 1(c) make clear
that their dictionary sizes linearly grows during training. This
issue may be explained since both algorithms do not incor-
porate any sparsification technique, resulting in a significant
drawback for implementation in online applications. By con-
trast, the number of samples of QKLMS algorithm grows
very slowly, resulting in a final network that sizes only 150.
Even that QKLMS and our proposal achieve similar MSE
values, the former method demands a dictionary size signif-
icantly higher as seen in Fig. 1(c), and therefore, increasing
the computational burden of online applications. As seen
in Fig. 1(c), the proposed framework achieves a competitive
performance, reaching the lowest network size through iter-
ations and suggesting that its sparsification strategy (based
on dimensionality reduction) helps to hold the most relevant
samples to perform prediction tasks.

As regards the kernel bandwidth and learning-rate influ-
ence on the performed prediction, Table 1 displays the MSE
evolution over the test set, showing that the proposed frame-
work achieves the lowest MSE at iteration 100. Thus, there is
an improvement in convergence time while competitive per-
formance is maintained in future iterations, proving that our
proposal converges to relatively low values of MSE, avoids
overfitting, and provide stable solutions in real-world appli-
cations.

Wind speed data: This collection holds hourly wind
speed records from the northern region of Colombia'. In this
case, the performance is also evaluated in predicting the cur-
rent value using the previous ten consecutive samples. The
considered training set ranges from September-24-2008 to
October-31-2008, and the test set ranges from May-28-2009
to June-02-2009.

Fig. 1(b) shows the learning curves estimated for the test
set. The contrasted algorithms provide a robust performance
through iterations. It is worth noting that the testing MSE de-
creases slower in all methods when compared with the learn-
ing curves of synthetic results (see Fig. 1(a)), clearly point-
ing out on the presence of highly non-stationary dynamics.
This situation makes the kernel-based adaptive filters demand
more time to encode the most relevant samples of this time-

IThe dataset is publicly available at http://www.ideam.gov.co/solicitud-
de-informacion
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Table 1. Performed results on tested datasets at different iterations. The best overall method of each column are marked with

bold notation. MSE-mean square error. DS-Dictionary Size.

Iteration
Dataset Method Measure 700 300 300 700 500
MSE 0.016 0.017 0.007 0.006 0.004
KLMS DS 100 200 300 400 500
MSE 0.017 0.017 0.007 0.006 0.004
Mackey-Glass QKLMS DS 80 103 126 136 150
¥ KIMS.VKs MSE 0.021 0.019 0.011 0.008 0.005
DS 100 200 300 400 500
Pronosal MSE 0.016 0.007 0.007 0.006 0.004
oposa DS 57 7 86 100 104
Iteration
28/09/08  06/10/08  14/10/08  23/10/08 31710708
MSE 0.253 0.299 0.249 0.084 0.115
KLMS DS 100 300 500 700 900
MSE 0.252 0.302 0.255 0.087 0.122
Wind Speed QKLMS DS 81 193 280 357 371
P KIMS.VKs MSE 0.241 0311 0.253 0.066 0.094
DS 100 300 500 700 900
Pronosal MSE 0.262 0.311 0272 0.074 0.095
oposa DS 62 88 96 108 121

series correctly. The variable bandwidth and learning-rate, in-
corporated by our framework, promote the kernel-based adap-
tive filter to converge faster without significant loss of accu-
racy. As seen in Fig. 1(b), the evolution curves make clear
also that our proposal reaches the lowest dictionary size dur-
ing training while maintains a competitive MSE performance.
However, if their initial values are inappropriately chosen at
the beginning, the converging speed can be very slow. In this
case, the suitable initial values of bandwidth and learning-rate
can be selected using one of the methods developed on this
account like the Silverman’s rule of thumb.

Furthermore, the results presented in Table 1 suggest that
the proposed framework is an adequate alternative to increase
the convergence speed while maintains a high accuracy with
the benefit of demanding a condensed dictionary size, and
therefore, improving the performance of on-line prediction
tasks.

3. CONCLUSION

In this study, a framework for kernel-based adaptive filters
is introduced that addresses three main challenges of their
online implementation: selection of appropriate bandwidth,
learning-rate, and training samples. In particular, the first
two stages are optimized based on nonlinear similarity cost
function expressed over time. Namely, we propose to sequen-
tially update the bandwidth and learning-rate parameters us-
ing a stochastic gradient algorithm that maximizes the cor-
rentropy function. Thus, the estimation error decreases along
iterations, which means an improvement in convergence time
while maintaining the robustness and simplicity of kernel-
based adaptive filters. As the correntropy function is inher-
ently insensitive to outliers, the proposed adaptive bandwidth
and learning-rate provide an effective mechanism to eliminate

the detrimental effect of outliers, and they are intrinsically dif-
ferent from the use of a threshold in conventional techniques.

To reduce the dictionary size, we also include a dimen-
sionality reduction method that incorporates a sparsification
strategy, employing a kernel-based cost function that quanti-
fies the global structures of training samples. To this end, the
proposed sparsification strategy is trained with the samples
that are most likely to appear during the prediction task, start-
ing with an empty dictionary and gradually adding new sam-
ples. As a result, the prediction task is performed by extract-
ing the most relevant input data — concerning the embedding
preservation — while maintaining a competitive performance.
However, we must clarify that our sparsification strategy may
be adversely affected with few training samples, due to it is
more difficult to identify global structures under this scenario.

Validation on both datasets, synthetic and real-world,
proves that the proposed framework converges to relatively
low values of mean-square-error, avoiding overfitting while
providing stable solutions in real-world applications.

We are in the process of expanding our research to other
information theoretic measures and datasets. In the future,
we plan to extend the results to the case where a more elabo-
rate hyper-parameter tuning procedure is introduced into the
compared kernel-based adaptive filters.
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