
 

 

DEEP SYNTHESIZER PARAMETER ESTIMATION 
 

Oren Barkan and David Tsiris 

 

Tel Aviv University 
 

ABSTRACT 

 

Manual tuning of synthesizer parameters to match a specific sound 

can be an exhaustive task. This paper proposes an automatic method 

for synthesizer parameters tuning to match a given input sound. The 

method is based on strided Convolutional Neural Networks and is 

capable of inferring the synthesizer parameters configuration from 

the input spectrogram and even from the raw audio. The effectiveness 

of our method is demonstrated on a subtractive synthesizer with 

frequency modulation. We present experimental results that 

showcase the superiority of our model over several baselines. We 

further show that the network depth is an important factor that 

contributes to the prediction accuracy. 

 

Index terms – deep parameter estimation, deep sound synthesis. 

 

1. INTRODUCTION AND RELATED WORK 

The art of sound synthesis is a challenging task that mainly reserved 

to sound designers and engineers [1]. Nowadays, synthesizers play a 

key role in electronic music production. Typically, music producers 

are equipped with a set of sound banks per synthesizer. These sound 

banks are essentially a collection of different configurations (patches) 

of the synthesizer parameters. Each configuration was carefully tuned 

by an expert and produces a different type of sound. 

During the last decade, the emergence of deep learning advanced 

the state of the art in various fields [16]-[24]. Specifically, 

convolutional neural networks (CNN) were found to be extraordinary 

learners for music related tasks [2]-[6]. In this paper, we investigate 

the problem of estimating the synthesizer parameter configuration 

that best reconstructs a source audio signal. We assume the source 

audio signal is generated from the same synthesizer (intra domain) by 

a hidden parameters configuration and leave the cross domain 

problem for future investigation. Therefore, our goal is to reveal the 

hidden parameters configuration that was used to generate the source 

signal. This is particularly useful in scenarios where music artists are 

interested in replicating sounds that were generated by other artists / 

sound designers using the same synthesizer (assuming no patch is 

released). To this end, we propose to train a 2D strided CNN to 

predict the synthesizer parameter configuration from the Short Time 

Fourier Transform (STFT) spectrogram [1] of the input audio signal. 

Moreover, we show that a CNN is capable of performing end to end 

learning, directly from the raw audio to the synthesizer parameters 

domain. This is done by adding several convolutional layers that are 

designed to learn an alternative representation for the STFT. 

The proposed pipelines are depicted in Fig. 1. In Fig.1 (a), an 

input audio signal is transformed to a STFT spectrogram matrix, 

which is then fed to a CNN. The CNN analyzes the spectrogram and 

predicts a parameter configuration. Finally, the synthesizer is 

configured according to the predicted parameters values and 

synthesizes the output audio signal. In Fig. 1(b), a CNN performs end 

to end learning and predicts the parameter configuration directly from 

the raw audio. In addition, we compare the performance of these 

models against two other types of fully connected (FC) neural 

network models: the first type is a FC network that receives a Bag of 

Words (BoW) representation of the spectrogram as input. The second 

type is a FC network that receives a set of complex handcrafted 

features [10] that capture spectral and temporal properties. 

The audio signals that are used for training and testing the models 

are generated by synthesizer parameter configurations that are 

randomly sampled, i.e. for each synthesizer parameter, we define an 

effective range of valid values and sample the parameter value from 

this range, uniformly. Hence, each configuration in the dataset is 

obtained by a set of (parameter, sampled value) pairs. 

    We present a comprehensive investigation of various network 

architectures and demonstrate the effectiveness of the proposed 

method in a series of quantitative and qualitative experiments. Our 

findings show that 1) the network depth is an important factor which 

contributes to the prediction accuracy and 2) a spectrogram based 

CNN of a sufficient depth outperforms its end to end counterpart, 

while both CNN variants significantly outperform FC networks. 

    Several attempts has been made to apply traditional machine 

learning techniques to physical modeling of musical instruments such 

as bowed and plucked strings [7]–[9]. However, we focus on 

subtractive synthesis with frequency modulation (FM) [1] that is 

more common in electronic music production and enables the 

creation of extremely diversified sound banks. This is in contrast to 

physical modeling synthesis that is mainly used for creating real-

sounding instruments, as it is programmed to make characteristic 

distinctions between various aspects of the instrument being created. 

    Itoyama and Okuno [10] proposed to apply a multiple linear 

regression from a set of handcrafted features to the synthesizer 

parameter domain. Our approach, differs from [10] by two main 

aspects: first, we solve a classification task rather than a regression. 

Second, we propose deep CNN architectures with non-linear gates. 

These networks have a sufficient capacity to learn complex filters 

(weights) that are capable of capturing important patterns and yet 

generalize well. This eliminates the need for handcrafted features and 

enables the use of STFT spectrogram / raw audio as input without 

further manipulations. We validate this claim, empirically, by 

comparing the CNN models to linear and non-linear FC models that 

use the handcrafted features [10]. 

Figure 1. The proposed pipelines. (a) The STFT spectrogram of the 

input signal is fed into a CNN that predicts the synthesizer parameter 

configuration. This configuration is then used to produce a sound that 

is similar to the input sound. (b) End to end learning. A CNN predicts 

the synthesizer parameter configuration directly from the raw audio.  
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2. SYNTHESIZER ARCHITECTURE AND PARAMETERS 

This section describes the synthesizer architecture that is used in this 

work. The synthesizer is implemented using JSyn [11], an open 

source library that provides audio synthesis API for Java. The reason 

we use JSyn is twofold: most of commercial synthesizers usually do 

not provide an API for generating sounds, programmatically. This 

makes the dataset generation process impractical (our dataset 

contains ~200K samples). Second, commercial synthesizers are not 

open source and quite expensive. Therefore, we avoid of using these 

synthesizers in order to make our research reproducible. 

    In similar to the majority of modern synthesizers, we employ 

subtractive and FM synthesis [1]. The synthesizer architecture is a 

cascade of four components. The first component consists of four 

oscillators, each produces a different waveform type [1]: sine, saw, 

square and triangle. All oscillators are frequency modulated by a 

sinusoidal waveform. An oscillator function is defined as 

����, �, �, �	 = ����2��� + �sin�2���	�  where �, �, �, � are the 

carrier frequency, modulation frequency, carrier amplitude and 

modulation amplitude, respectively. � ∈ � is the waveform type 

with � = ����, ���, ���, ���  that correspond to the 

abovementioned waveforms. Note that each oscillator �� is 

associated with its own set of �� , �� , �� , �� parameters. Finally, the 

outputs from all oscillators are summed to �!"# = ∑ ���∈% . 

Therefore, the number of parameters in the �!"#  component is 16. 

     The second component is the Attack Decay Sustain Release 

(ADSR) envelope generator [1] �&'(��, �, ), �, �	. This component 

controls the amplitude of the input � at any point in the signal 

duration. The contour of the ADSR envelope is specified using four 

parameters: � (Attack) is the time taken for initial run-up of level from 

zero to peak, beginning when the key is first pressed.  ) (Decay) is 

the time taken for the subsequent run down from the attack level to 

the designated sustain level. � (Sustain) is the level during the main 

sequence of sound’s duration, until the key is released. � (Release) is 

the time taken for the level to decay from the sustain level to zero 

after the key is released. 

    The third component is the filter �*+��, �#,- , �	 that consists of a 

low-pass filter together with a resonance [1]. Setting a cutoff 

frequency �#,- ensures that all frequencies above �#,- are cut. The 

resonance parameter � determines a narrow band of frequencies near 

�#,- that are amplified. The last component in the chain is the gater - 

a Low Frequency Oscillator (LFO) that performs amplitude 

modulation to the input using a square wave with a frequency �./-&:  

�./-&��, �	 = ��1 + �"12�2��./-&�		/2	���	. Thus, the synthesizer 

function has 23 parameters and is given by �./-& ∗ �*+ ∗ �&'( ∗ �!"# , 

where ∗ stands for the function composition. 
 

3. DATASET GENERATION 

For each synthesizer parameter (described in Section 2), we perform 

a quantization to a set of 16 levels and treat each level as a different 

class. Hence, we formulate the parameter estimation task as a 

classification problem rather than a regression - our model aims at 

predicting for each parameter the correct class (value). This enables 

the use of the binary cross entropy loss [6] that is easier to optimize 

than the L2 loss (a similar observation is made in [12]). Moreover, 

the classification formulation naturally allows for a specific measure 

(Section 5) that enables better quantification and understanding of the 

parameter estimation accuracy. 

    The range of the carrier frequency � is quantized according to � =
2'/56 × 440:; with � ∈ �0. .15 . This produces frequencies that 

correspond to the 16 consecutive musical notes �> − @A. The rest of 

the synthesizer parameters ranges are quantized evenly to 16 classes 

according to the following ranges: the amplitudes and ADSR 

envelope parameters ��, �, ), �, � are in [0.001, 1], the modulation 

amplitudes �� are in [0, 1500], the modulation frequency, gating 

frequency, cutoff frequency and resonance  ��, �./-& , �#,- , � are in [1, 

30], [0.5, 30], [200, 4000], [0.01, 10], respectively. The described 

sampling pattern avoids sounds generation that are indistinguishable 

by human hearing and better matches a linear perception. 

    The dataset consists of �B, ℎ	 pairs, where ℎ is the label vector that 

corresponds to a specific synthesizer parameter configuration and B 

is the raw audio signal produced by the configuration that is 

associated with ℎ. The generation process of a single pair �B, ℎ	 

works as follows: for each synthesizer parameter D, we sample a class 

from a uniform categorical random variable E ∈ �0, … ,15  and create 

an one-hot encoding vector ℎG ∈ �0,1 5A for the sampled class. Then, 

all vectors are concatenated to a supervector ℎ = Hℎ5, … , ℎ6IJ ∈
�0,1 IAK that contains the one-hot encoding for each parameter in the 

corresponding section in ℎ. Finally, the synthesizer parameters are 

configured according to values that correspond to the sampled classes 

in ℎ and an output audio signal in a duration of 1 second with a 

sampling rate of 16384Hz B ∈ H−1,1J5AIK> is produced. 

    Recall that we consider two types of CNN architectures: an end to 

end (Fig. 1(b)) and a spectrogram based (Fig. 1(a)), where the latter 

requires further transformation over B. Therefore, the STFT 

spectrogram of B is computed with half overlapping windows of size 

512 to produce a matrix L ∈ ℝ6NO×A>. This matrix contains 64 vectors 

in size of 257 that correspond to the absolute of the Fourier 

Transforms (FT) of 64 consecutive time windows. Note that the 

application of FT produces 512 complex values. However, we 

discard ~half of them since the FT of real signals is conjugate 

symmetric. This process is repeated 200k times to produce two 

datasets: PQ6Q = ��BR , ℎR	  and PSTUT = ��LR , ℎR	  that are used for 

training the end to end and STFT based CNNs, respectively. 

 

4. MODELS AND METHODOLOGY 

In this section, we describe the CNN components from the two 

different pipelines that appear in Fig. 1. The goal of these components 

is to learn a function from the STFT / raw audio domains to the 

synthesizer parameter domain. To this end, we propose to train CNNs 

using the datasets described in Section 3 to predict the correct 

parameter classes (values) from the STFT matrix / raw audio. As a 

baseline, we further consider the replacement of the CNNs with Fully 

Connected (FC) neural networks. All models have output layers in 

size of 368 with sigmoid activations (to match ℎ’s dimension). Note 

that an alternative is to apply 23 separated softmax activations that 

are fed into 23 categorical cross entropy loss functions (for each 

synthesizer parameter, separately) and compute the final loss as the 

summation of the 23 loss functions. While this alternative approach 

seems more natural, in our initial experiments, it performs worse. 

    In order to isolate the effect of network depth, we restrict all 

networks to have the same number of trainable parameters, 

regardless of their depth. This ensures that better results, when 

obtained using a deeper model, are indeed due to the increase in 

depth. Yet, we did conduct an initial investigation to find a saturation 

point in which a further increase in number of trainable parameters 

(model capacity) materializes to a marginal contribution to the model 

accuracy. In what follows, we describe all of the evaluated models. 

4.1. Fully Connected Neural Networks 

A FC neural network is a feed forward network in which each neuron 

is connected to all neurons in the previous layer [6]. This type of 

networks expect to have 1D input (vector). Since the training 

instances are STFT matrices / raw audio signals, the trivial choice is 

to feed them to the FC network as is (flattened). However, in our 

initial experiments, both approaches produced poor results. This is 

since both flattened STFT matrices and raw audio signals are not time 

invariant and of an extremely high dimension (~16K). 
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    In order to alleviate this problem, we propose to use two different 

types of input representation to the FC models: the first type is based 

on the STFT matrix. Specifically, we first apply PCA to the STFT 

frequency axis to produce a STFT-PCA matrix with a reduced 

frequency-PCA dimension of 64 (while retaining 97% of the 

variance). Then, we learn a Bag of Words (BoW) [13] representation 

of the STFT-PCA matrices. To this end, we Vector Quantize [13] the 

STFT matrices using K-means [13] with V = 1000 and assign each 

row vector in the STFT-PCA matrix to its closest centroid. This 

produces a count vector in size 1000, in which the �-th entry counts 

the number of vectors that were assigned to �-th centroid. Finally, we 

convert the counts to probabilities by sum normalization. The result 

is a time invariant representation of a reduced dimensionality.  

   We consider four different FC model architectures that use the 

BoW representation as input: the first model has a single hidden layer 

with linear activations and is dubbed FC Linear (note that in this 

work, we define the number of layers in a network, as the number of 

hidden layers in between the input and output layers). Hence, FC 

Linear is equivalent to a logistic regression model with a hidden 

layer. The three other models are dubbed FC1, FC2 and FC3 and have 

1, 2 and 3 hidden layers with ReLU [6] activations, respectively. We 

observed that further increase in network depth to more than 3 layers 

did not contribute to improved performance. 

    The second type of input representation that we consider is a set of 

complex handcrafted features [10] that are computed from the raw 

audio signal. These features capture both spectral properties and 

temporal variations in the signal and form a 319,200 dimensional 

supervector. This supervector is then reduced to dimension of 1000 

by the application of PCA. The reader is referred to Section 2 in [10] 

for a detailed description of the feature extraction process. 

    We consider two different FC model architectures that use the 

input representation from [10]. The first is a linear FC model that is 

equivalent to the one from [10], but uses a classification output layer 

instead of a regression (In our initial experiments, we tested the 

regression models from [10] and observed they underperform 

classification models). We dub this model ‘HC’ (handcrafted). In 

addition, we investigated whether a nonlinear FC model can benefit 

from using the features from [10]. We found that a FC network with 

3 ReLU activated layers and a dropout in between obtained the 

largest improvement over HC [10], while further increase in depth or 

number of trainable parameters results in overfitting with worse 

values of validation loss. We dub this model ‘HC3’. Note that HC3 

is an improvement we suggest, to showcase the potential gain that is 

obtained by using the features from [10] with deep neural networks. 

For all models in this section, a dropout [6] is applied after each 

hidden layer in order to avoid a severe overfitting. All FC models 

have 1.2M trainable parameters and are fully detailed in [15]. 

4.2. Strided Convolutional Neural Networks 

The second type of models we use are 2D CNNs as these were found 

to improve on the state of the art in music and audio related tasks [5]. 

Different from [5], we do not perform any type of pooling operations. 

Instead, we use strided convolutions layers [6], as we found this 

approach to significantly outperform the traditional setup of ordinary 

convolutions layers with pooling in between. 

    Two types of CNNs are considered: the first type is a spectrogram 

based 2D CNN that receives the STFT matrix as input. This network 

learns filters that analyze the input in both frequency and time axes, 

simultaneously. We investigate seven different spectrogram based 

CNNs. The first six models have the same number of 1.2M trainable 

parameters, but vary by network depth. These models are dubbed 

Conv1, …, Conv6 and have 1,…,6 2D strided convolutional layers, 

respectively. The seventh CNN is dubbed Conv6XL and has 6 strided 

convolutional layers, but 2.3M trainable parameters. The reason we 

further include Conv6XL in the evaluation is to check whether 

increasing the model capacity, in terms of number of trainable 

parameters, further contributes to the prediction accuracy.  

    The second type of CNN is an end to end CNN that receives the 

raw audio signal as input. This network is dubbed ConvE2E and 

further aims at learning a set of filters that produce a transformation 

on the raw audio, which serves as an alternative to the STFT filters. 

To this end, the first four layers in the ConvE2E model are designed 

to transform the 16K dimensional input signal to a matrix in the exact 

same size of the STFT matrix (64x257). These four layers are 1D 

strided convolutional layers that operates on the time axis only. This 

is followed by additional six 2D strided convolutional layers that are 

identical to those of the Conv6 model. Due to the extra four layers, 

ConvE2E has 1.9M trainable parameters. Finally, all CNNs have an 

additional FC hidden layer in between the last convolutional and the 

output layers. The exact CNN architectures are fully detailed in [15]. 

     

5. EXPERIMENTAL SETUP AND RESULTS 

In this section, we describe the experimental setup, evaluation 

measures and present quantitative and qualitative results. The 

reported results are obtained using 10 fold cross validation on the 

datasets that are described in Section 4. All models are optimized 

w.r.t. the binary cross entropy loss [6] using ADAM [14] optimizer 

with mini batch size of 16 for 100 epochs. 

    The training and validation loss per model are displayed in Fig. 2. 

We see that most of the CNN models obtain significantly lower 

validation loss values than their FC and HC counterparts. 

Specifically, Conv6XL and Conv6 perform the best and on par with 

each other. Therefore, we conclude that increasing the number of 

trainable parameters from 1.2M to 2.3M has a negligible effect for 

CNNs of a sufficient depth. The largest decrease in loss is obtained 

when moving from Conv1 to Conv2 and then from Conv2 to Conv3. 

We believe that this is since Conv1 and Conv2 uses strides values 

that results in too aggressive subsampling. ConvE2E significantly 

underperforms Conv4, Conv5, Conv6 and Conv6XL, but is on par 

with Conv3 and outperforms all FC and HC models. Hence, we 

conclude that the STFT spectrogram contains further crucial 

information that ConvE2E fails to extract from the raw audio. Yet, 

ConvE2E manages to learn filters that are better than the complex 

handcrafted features from [10], even when combined with a deep FC 

network (HC3). Among the FC models, FC2 and FC Linear perform 

the best and the worst, respectively. Note that we omit the loss graphs 

of FC1 and FC3 as these almost completely overlap with FC2. 

Examining the HC models, we observe the following trends: HC 

which is a linear model outperform all non-linear FC models and is 

on par with Conv1. This can be explained by the fact that HC uses 

handcrafted features that are far more complex than the STFT 

spectrogram and its BoW representation. HC3 significantly 

outperforms HC and Conv1, but underperforms the rest of the Conv 

models including ConvE2E. 

    Figure 2 further shows that network depth plays an important 

factor: the deeper the network the better it manages to learn. 

Specifically, we observe that a large reduction in loss is obtained by 

moving from HC to HC3, despite the fact both models have the same 

number of trainable parameters. This is another evidence for the 

importance of network depth, which results in additional nonlinear 

transformations. However, the contribution by depth becomes 

marginal, when using more than 5, 2 and 3 layers for CNN, FC and 

HC models, respectively. In terms of generalization, FC1, FC2, FC3 

and HC3 start overfitting after ~20 epochs. We tried to alleviate this 

problem by increasing the dropout values and applying L2 

regularization, but this resulted in higher values of validation loss. In 

the case of CNN models, no overfitting is observed, despite the fact 

that no regularization is applied. This can be explained by the nature 

of CNNs that enables weight sharing and hence less tend to overfit. 
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    Our goal is to measure the reconstruction quality in terms of human 

hearing. As we are not aware of any quantitative measure that 

correlates well with human hearing, we propose several additional 

measures to evaluate the models performance in multiple resolutions: 

accuracy per group of parameters and reconstruction quality in the 

frequency domain. 

    The second measure we use is the top-k mean accuracy. For a given 

test example, the top-k accuracy function outputs 1 if the correct class 

rank is among the top k predicted classes by the model and 0 

otherwise. The top-k mean accuracy is obtained by computing the 

top-k accuracy for each test example and then taking the mean across 

all examples. We compute the top-k mean accuracy per synthesizer 

parameter for W = 1, … ,5. Then, we group the synthesizer parameters 

according to functionality groups: Filter group that contains the 

parameter �XE�, � . Notes, Amplitude LFO, Frequency LFO and 

Oscillators Amplitude groups that contain the parameters 

��, ��, ��, �� for all �, respectively. The last two groups are the 

Amplitude ADSR group that contains the parameters �, ), �, � and the 

All group that contains all the synthesizer parameters.  For each 

combination of model and parameters group, we compute the mean 

of the top-k mean accuracy across all parameters in that group and 

for all k values. The reason we divide the parameters into different 

groups is in order to inspect the models performance w.r.t. each 

functional in the synthesizer. Figure 3 presents top-k mean accuracy 

as a function of k for each combination of parameter group and 

model. The best accuracy values are obtained for the Filter and 

Amplitude LFO groups, where the margin between the CNN and FC 

models is the largest. Furthermore, in all graphs the CNNs 

significantly outperform the FC models. Finally, we observe that for 

the Amplitude ADSR parameter group, ConvE2E produces the best 

accuracy graph followed by HC3 as the second best. This is directly 

related to the ability of these models to predict the attack parameter 

significantly better than the other models. An interesting pattern is 

further observed in the Notes graph: while ConvE2E underperforms 

Conv4 – Conv6XL for k = 1. It becomes the champion for k > 1. This 

means that ConvE2E manages to infer a better ranking of musical 

notes when considering the predictions beyond the top-1. 

    Next, we investigate how well the different models reconstruct the 

input signals in the frequency domain. The evaluation focuses on a 

subset of the models that performed the best among each model type 

(Linear FC, non-linear FCs, HCs and CNNs). Specifically, we 

compute for each signal �� in the test set its STFT spectrogram LG. 

Then, L� is fed to the model to produce the synthesizer parameter 

configuration, which is then used to synthesize an output signal �Y  
using the synthesizer. Finally, we compute the STFT spectrogram LY 

using �Y. Note that in the case of ConvE2E and HC models, �� is used 

as input (HC models further require the preprocessing of [10] on ��). 

    The spectrogram reconstruction quality is measured by the Pearson 

Correlation Coefficient (PCC) Z��, �	 = XY���, �	/[\[]. Since Z is 

defined over vectors rather than matrices, we flatten LG and L! to 

vectors by performing rows concatenation and then compute their 

PCC value. In addition, we evaluate the reconstruction quality in the 

Fourier domain. To this end, we compute the PCC over the absolute 

of the Fourier Transforms (FT) of �G and �!. Different from the 

STFT, which provides the frequency information per short time 

frames, the FT provides a global representation that aggregates the 

frequency information from the entire signal. 

    Table 1 presents the mean and median values of Z (x100) that were 

computed over the test set for each combination of domain and 

model. We observe that the same trends from Figs. 2 and 3 also exist 

in Tab. 1. Spectrogram based CNNs performs the best ordered by 

their depth. ConvE2E outperforms the HC3 and HC models. FC 

models perform the worst.  Hence, we conclude that network depth 

contributes to the reconstruction quality as well. 

    Lastly, audio and visual examples of reconstructions (for samples 

that are drawn randomly from the test set) are provided in [15]. These 

examples correlates well with the trends that exist in Tab. 1 and 

further demonstrate the effectiveness of the proposed models. 

 

6. CONCLUSION 

We proposed end to end and spectrogram based CNNs for the 

synthesizer parameter estimation task. Empirical results show that the 

proposed models outperform HC and FC models. Network depth is 

found to be an important factor that contributes to the prediction 

accuracy. In the future, we plan to extend the evaluation to the cross-

domain scenario and investigate very deep models such as [25, 26]. 

We further plan to include the synthesizer function in the 

backpropagation process, in order to train models to reconstruct the 

STFT directly. 

        Table 1. Reconstruction quality for the evaluated models in frequency domains. ^ values are x100. 

Measure/Model Conv6XL Conv6 Conv5 Conv4 ConvE2E HC3 HC [10] FC2 FC Linear 

^ mean (STFT) 92.04 91.38 91.09 90.97 88.33 88.04 84.62 77.22 75.24 

^ median (STFT) 95.61 95.39 95.1 94.99 93.41 92.59 88.53 82.32 80.83 

^ mean (FT) 76.13 74.28 73.46 73.29 71.36 64.39 59.68 58.18 54.74 

^ median (FT) 90.22 88 87.4 86.29 80.61 68.07 59.73 57.19 51.15 

 

 

                      

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Training and validation loss graphs for all models. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Top-k mean accuracy graphs per parameters group. 
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