

DEEP SYNTHESIZER PARAMETER ESTIMATION

Oren Barkan and David Tsiris

Tel Aviv University

ABSTRACT

Manual tuning of synthesizer parameters to match a specific sound

can be an exhaustive task. This paper proposes an automatic method

for synthesizer parameters tuning to match a given input sound. The

method is based on strided Convolutional Neural Networks and is

capable of inferring the synthesizer parameters configuration from

the input spectrogram and even from the raw audio. The effectiveness

of our method is demonstrated on a subtractive synthesizer with

frequency modulation. We present experimental results that

showcase the superiority of our model over several baselines. We

further show that the network depth is an important factor that

contributes to the prediction accuracy.

Index terms – deep parameter estimation, deep sound synthesis.

1. INTRODUCTION AND RELATED WORK

The art of sound synthesis is a challenging task that mainly reserved

to sound designers and engineers [1]. Nowadays, synthesizers play a

key role in electronic music production. Typically, music producers

are equipped with a set of sound banks per synthesizer. These sound

banks are essentially a collection of different configurations (patches)

of the synthesizer parameters. Each configuration was carefully tuned

by an expert and produces a different type of sound.

During the last decade, the emergence of deep learning advanced

the state of the art in various fields [16]-[24]. Specifically,

convolutional neural networks (CNN) were found to be extraordinary

learners for music related tasks [2]-[6]. In this paper, we investigate

the problem of estimating the synthesizer parameter configuration

that best reconstructs a source audio signal. We assume the source

audio signal is generated from the same synthesizer (intra domain) by

a hidden parameters configuration and leave the cross domain

problem for future investigation. Therefore, our goal is to reveal the

hidden parameters configuration that was used to generate the source

signal. This is particularly useful in scenarios where music artists are

interested in replicating sounds that were generated by other artists /

sound designers using the same synthesizer (assuming no patch is

released). To this end, we propose to train a 2D strided CNN to

predict the synthesizer parameter configuration from the Short Time

Fourier Transform (STFT) spectrogram [1] of the input audio signal.

Moreover, we show that a CNN is capable of performing end to end

learning, directly from the raw audio to the synthesizer parameters

domain. This is done by adding several convolutional layers that are

designed to learn an alternative representation for the STFT.

The proposed pipelines are depicted in Fig. 1. In Fig.1 (a), an

input audio signal is transformed to a STFT spectrogram matrix,

which is then fed to a CNN. The CNN analyzes the spectrogram and

predicts a parameter configuration. Finally, the synthesizer is

configured according to the predicted parameters values and

synthesizes the output audio signal. In Fig. 1(b), a CNN performs end

to end learning and predicts the parameter configuration directly from

the raw audio. In addition, we compare the performance of these

models against two other types of fully connected (FC) neural

network models: the first type is a FC network that receives a Bag of

Words (BoW) representation of the spectrogram as input. The second

type is a FC network that receives a set of complex handcrafted

features [10] that capture spectral and temporal properties.

The audio signals that are used for training and testing the models

are generated by synthesizer parameter configurations that are

randomly sampled, i.e. for each synthesizer parameter, we define an

effective range of valid values and sample the parameter value from

this range, uniformly. Hence, each configuration in the dataset is

obtained by a set of (parameter, sampled value) pairs.

 We present a comprehensive investigation of various network

architectures and demonstrate the effectiveness of the proposed

method in a series of quantitative and qualitative experiments. Our

findings show that 1) the network depth is an important factor which

contributes to the prediction accuracy and 2) a spectrogram based

CNN of a sufficient depth outperforms its end to end counterpart,

while both CNN variants significantly outperform FC networks.

 Several attempts has been made to apply traditional machine

learning techniques to physical modeling of musical instruments such

as bowed and plucked strings [7]–[9]. However, we focus on

subtractive synthesis with frequency modulation (FM) [1] that is

more common in electronic music production and enables the

creation of extremely diversified sound banks. This is in contrast to

physical modeling synthesis that is mainly used for creating real-

sounding instruments, as it is programmed to make characteristic

distinctions between various aspects of the instrument being created.

 Itoyama and Okuno [10] proposed to apply a multiple linear

regression from a set of handcrafted features to the synthesizer

parameter domain. Our approach, differs from [10] by two main

aspects: first, we solve a classification task rather than a regression.

Second, we propose deep CNN architectures with non-linear gates.

These networks have a sufficient capacity to learn complex filters

(weights) that are capable of capturing important patterns and yet

generalize well. This eliminates the need for handcrafted features and

enables the use of STFT spectrogram / raw audio as input without

further manipulations. We validate this claim, empirically, by

comparing the CNN models to linear and non-linear FC models that

use the handcrafted features [10].

Figure 1. The proposed pipelines. (a) The STFT spectrogram of the

input signal is fed into a CNN that predicts the synthesizer parameter

configuration. This configuration is then used to produce a sound that

is similar to the input sound. (b) End to end learning. A CNN predicts

the synthesizer parameter configuration directly from the raw audio.

CNN Synth

Input

Sound

Synthesized

Sound

CNN Synth

Input

Sound

STFT

Spectrogram
Synthesized

Sound

(a)

(b)

3887978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

2. SYNTHESIZER ARCHITECTURE AND PARAMETERS

This section describes the synthesizer architecture that is used in this

work. The synthesizer is implemented using JSyn [11], an open

source library that provides audio synthesis API for Java. The reason

we use JSyn is twofold: most of commercial synthesizers usually do

not provide an API for generating sounds, programmatically. This

makes the dataset generation process impractical (our dataset

contains ~200K samples). Second, commercial synthesizers are not

open source and quite expensive. Therefore, we avoid of using these

synthesizers in order to make our research reproducible.

 In similar to the majority of modern synthesizers, we employ

subtractive and FM synthesis [1]. The synthesizer architecture is a

cascade of four components. The first component consists of four

oscillators, each produces a different waveform type [1]: sine, saw,

square and triangle. All oscillators are frequency modulated by a

sinusoidal waveform. An oscillator function is defined as

����, �, �, �	 = ����2��� + �sin�2���	� where �, �, �, � are the

carrier frequency, modulation frequency, carrier amplitude and

modulation amplitude, respectively. � ∈ � is the waveform type

with � = ����, ���, ���, ��� that correspond to the

abovementioned waveforms. Note that each oscillator �� is

associated with its own set of �� , �� , �� , �� parameters. Finally, the

outputs from all oscillators are summed to �!"# = ∑ ���∈% .

Therefore, the number of parameters in the �!"# component is 16.

 The second component is the Attack Decay Sustain Release

(ADSR) envelope generator [1] �&'(��, �,), �, �	. This component

controls the amplitude of the input � at any point in the signal

duration. The contour of the ADSR envelope is specified using four

parameters: � (Attack) is the time taken for initial run-up of level from

zero to peak, beginning when the key is first pressed.) (Decay) is

the time taken for the subsequent run down from the attack level to

the designated sustain level. � (Sustain) is the level during the main

sequence of sound’s duration, until the key is released. � (Release) is

the time taken for the level to decay from the sustain level to zero

after the key is released.

 The third component is the filter �*+��, �#,- , �	 that consists of a

low-pass filter together with a resonance [1]. Setting a cutoff

frequency �#,- ensures that all frequencies above �#,- are cut. The

resonance parameter � determines a narrow band of frequencies near

�#,- that are amplified. The last component in the chain is the gater -

a Low Frequency Oscillator (LFO) that performs amplitude

modulation to the input using a square wave with a frequency �./-&:

�./-&��, �	 = ��1 + �"12�2��./-&�		/2	���	. Thus, the synthesizer

function has 23 parameters and is given by �./-& ∗ �*+ ∗ �&'(∗ �!"# ,

where ∗ stands for the function composition.

3. DATASET GENERATION

For each synthesizer parameter (described in Section 2), we perform

a quantization to a set of 16 levels and treat each level as a different

class. Hence, we formulate the parameter estimation task as a

classification problem rather than a regression - our model aims at

predicting for each parameter the correct class (value). This enables

the use of the binary cross entropy loss [6] that is easier to optimize

than the L2 loss (a similar observation is made in [12]). Moreover,

the classification formulation naturally allows for a specific measure

(Section 5) that enables better quantification and understanding of the

parameter estimation accuracy.

 The range of the carrier frequency � is quantized according to � =
2'/56 × 440:; with � ∈ �0. .15 . This produces frequencies that

correspond to the 16 consecutive musical notes �> − @A. The rest of

the synthesizer parameters ranges are quantized evenly to 16 classes

according to the following ranges: the amplitudes and ADSR

envelope parameters ��, �,), �, � are in [0.001, 1], the modulation

amplitudes �� are in [0, 1500], the modulation frequency, gating

frequency, cutoff frequency and resonance ��, �./-& , �#,- , � are in [1,

30], [0.5, 30], [200, 4000], [0.01, 10], respectively. The described

sampling pattern avoids sounds generation that are indistinguishable

by human hearing and better matches a linear perception.

 The dataset consists of �B, ℎ	 pairs, where ℎ is the label vector that

corresponds to a specific synthesizer parameter configuration and B

is the raw audio signal produced by the configuration that is

associated with ℎ. The generation process of a single pair �B, ℎ	

works as follows: for each synthesizer parameter D, we sample a class

from a uniform categorical random variable E ∈ �0, … ,15 and create

an one-hot encoding vector ℎG ∈ �0,1 5A for the sampled class. Then,

all vectors are concatenated to a supervector ℎ = Hℎ5, … , ℎ6IJ ∈
�0,1 IAK that contains the one-hot encoding for each parameter in the

corresponding section in ℎ. Finally, the synthesizer parameters are

configured according to values that correspond to the sampled classes

in ℎ and an output audio signal in a duration of 1 second with a

sampling rate of 16384Hz B ∈ H−1,1J5AIK> is produced.

 Recall that we consider two types of CNN architectures: an end to

end (Fig. 1(b)) and a spectrogram based (Fig. 1(a)), where the latter

requires further transformation over B. Therefore, the STFT

spectrogram of B is computed with half overlapping windows of size

512 to produce a matrix L ∈ ℝ6NO×A>. This matrix contains 64 vectors

in size of 257 that correspond to the absolute of the Fourier

Transforms (FT) of 64 consecutive time windows. Note that the

application of FT produces 512 complex values. However, we

discard ~half of them since the FT of real signals is conjugate

symmetric. This process is repeated 200k times to produce two

datasets: PQ6Q = ��BR , ℎR	 and PSTUT = ��LR , ℎR	 that are used for

training the end to end and STFT based CNNs, respectively.

4. MODELS AND METHODOLOGY

In this section, we describe the CNN components from the two

different pipelines that appear in Fig. 1. The goal of these components

is to learn a function from the STFT / raw audio domains to the

synthesizer parameter domain. To this end, we propose to train CNNs

using the datasets described in Section 3 to predict the correct

parameter classes (values) from the STFT matrix / raw audio. As a

baseline, we further consider the replacement of the CNNs with Fully

Connected (FC) neural networks. All models have output layers in

size of 368 with sigmoid activations (to match ℎ’s dimension). Note

that an alternative is to apply 23 separated softmax activations that

are fed into 23 categorical cross entropy loss functions (for each

synthesizer parameter, separately) and compute the final loss as the

summation of the 23 loss functions. While this alternative approach

seems more natural, in our initial experiments, it performs worse.

 In order to isolate the effect of network depth, we restrict all

networks to have the same number of trainable parameters,

regardless of their depth. This ensures that better results, when

obtained using a deeper model, are indeed due to the increase in

depth. Yet, we did conduct an initial investigation to find a saturation

point in which a further increase in number of trainable parameters

(model capacity) materializes to a marginal contribution to the model

accuracy. In what follows, we describe all of the evaluated models.

4.1. Fully Connected Neural Networks

A FC neural network is a feed forward network in which each neuron

is connected to all neurons in the previous layer [6]. This type of

networks expect to have 1D input (vector). Since the training

instances are STFT matrices / raw audio signals, the trivial choice is

to feed them to the FC network as is (flattened). However, in our

initial experiments, both approaches produced poor results. This is

since both flattened STFT matrices and raw audio signals are not time

invariant and of an extremely high dimension (~16K).

3888

 In order to alleviate this problem, we propose to use two different

types of input representation to the FC models: the first type is based

on the STFT matrix. Specifically, we first apply PCA to the STFT

frequency axis to produce a STFT-PCA matrix with a reduced

frequency-PCA dimension of 64 (while retaining 97% of the

variance). Then, we learn a Bag of Words (BoW) [13] representation

of the STFT-PCA matrices. To this end, we Vector Quantize [13] the

STFT matrices using K-means [13] with V = 1000 and assign each

row vector in the STFT-PCA matrix to its closest centroid. This

produces a count vector in size 1000, in which the �-th entry counts

the number of vectors that were assigned to �-th centroid. Finally, we

convert the counts to probabilities by sum normalization. The result

is a time invariant representation of a reduced dimensionality.

 We consider four different FC model architectures that use the

BoW representation as input: the first model has a single hidden layer

with linear activations and is dubbed FC Linear (note that in this

work, we define the number of layers in a network, as the number of

hidden layers in between the input and output layers). Hence, FC

Linear is equivalent to a logistic regression model with a hidden

layer. The three other models are dubbed FC1, FC2 and FC3 and have

1, 2 and 3 hidden layers with ReLU [6] activations, respectively. We

observed that further increase in network depth to more than 3 layers

did not contribute to improved performance.

 The second type of input representation that we consider is a set of

complex handcrafted features [10] that are computed from the raw

audio signal. These features capture both spectral properties and

temporal variations in the signal and form a 319,200 dimensional

supervector. This supervector is then reduced to dimension of 1000

by the application of PCA. The reader is referred to Section 2 in [10]

for a detailed description of the feature extraction process.

 We consider two different FC model architectures that use the

input representation from [10]. The first is a linear FC model that is

equivalent to the one from [10], but uses a classification output layer

instead of a regression (In our initial experiments, we tested the

regression models from [10] and observed they underperform

classification models). We dub this model ‘HC’ (handcrafted). In

addition, we investigated whether a nonlinear FC model can benefit

from using the features from [10]. We found that a FC network with

3 ReLU activated layers and a dropout in between obtained the

largest improvement over HC [10], while further increase in depth or

number of trainable parameters results in overfitting with worse

values of validation loss. We dub this model ‘HC3’. Note that HC3

is an improvement we suggest, to showcase the potential gain that is

obtained by using the features from [10] with deep neural networks.

For all models in this section, a dropout [6] is applied after each

hidden layer in order to avoid a severe overfitting. All FC models

have 1.2M trainable parameters and are fully detailed in [15].

4.2. Strided Convolutional Neural Networks

The second type of models we use are 2D CNNs as these were found

to improve on the state of the art in music and audio related tasks [5].

Different from [5], we do not perform any type of pooling operations.

Instead, we use strided convolutions layers [6], as we found this

approach to significantly outperform the traditional setup of ordinary

convolutions layers with pooling in between.

 Two types of CNNs are considered: the first type is a spectrogram

based 2D CNN that receives the STFT matrix as input. This network

learns filters that analyze the input in both frequency and time axes,

simultaneously. We investigate seven different spectrogram based

CNNs. The first six models have the same number of 1.2M trainable

parameters, but vary by network depth. These models are dubbed

Conv1, …, Conv6 and have 1,…,6 2D strided convolutional layers,

respectively. The seventh CNN is dubbed Conv6XL and has 6 strided

convolutional layers, but 2.3M trainable parameters. The reason we

further include Conv6XL in the evaluation is to check whether

increasing the model capacity, in terms of number of trainable

parameters, further contributes to the prediction accuracy.

 The second type of CNN is an end to end CNN that receives the

raw audio signal as input. This network is dubbed ConvE2E and

further aims at learning a set of filters that produce a transformation

on the raw audio, which serves as an alternative to the STFT filters.

To this end, the first four layers in the ConvE2E model are designed

to transform the 16K dimensional input signal to a matrix in the exact

same size of the STFT matrix (64x257). These four layers are 1D

strided convolutional layers that operates on the time axis only. This

is followed by additional six 2D strided convolutional layers that are

identical to those of the Conv6 model. Due to the extra four layers,

ConvE2E has 1.9M trainable parameters. Finally, all CNNs have an

additional FC hidden layer in between the last convolutional and the

output layers. The exact CNN architectures are fully detailed in [15].

5. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the experimental setup, evaluation

measures and present quantitative and qualitative results. The

reported results are obtained using 10 fold cross validation on the

datasets that are described in Section 4. All models are optimized

w.r.t. the binary cross entropy loss [6] using ADAM [14] optimizer

with mini batch size of 16 for 100 epochs.

 The training and validation loss per model are displayed in Fig. 2.

We see that most of the CNN models obtain significantly lower

validation loss values than their FC and HC counterparts.

Specifically, Conv6XL and Conv6 perform the best and on par with

each other. Therefore, we conclude that increasing the number of

trainable parameters from 1.2M to 2.3M has a negligible effect for

CNNs of a sufficient depth. The largest decrease in loss is obtained

when moving from Conv1 to Conv2 and then from Conv2 to Conv3.

We believe that this is since Conv1 and Conv2 uses strides values

that results in too aggressive subsampling. ConvE2E significantly

underperforms Conv4, Conv5, Conv6 and Conv6XL, but is on par

with Conv3 and outperforms all FC and HC models. Hence, we

conclude that the STFT spectrogram contains further crucial

information that ConvE2E fails to extract from the raw audio. Yet,

ConvE2E manages to learn filters that are better than the complex

handcrafted features from [10], even when combined with a deep FC

network (HC3). Among the FC models, FC2 and FC Linear perform

the best and the worst, respectively. Note that we omit the loss graphs

of FC1 and FC3 as these almost completely overlap with FC2.

Examining the HC models, we observe the following trends: HC

which is a linear model outperform all non-linear FC models and is

on par with Conv1. This can be explained by the fact that HC uses

handcrafted features that are far more complex than the STFT

spectrogram and its BoW representation. HC3 significantly

outperforms HC and Conv1, but underperforms the rest of the Conv

models including ConvE2E.

 Figure 2 further shows that network depth plays an important

factor: the deeper the network the better it manages to learn.

Specifically, we observe that a large reduction in loss is obtained by

moving from HC to HC3, despite the fact both models have the same

number of trainable parameters. This is another evidence for the

importance of network depth, which results in additional nonlinear

transformations. However, the contribution by depth becomes

marginal, when using more than 5, 2 and 3 layers for CNN, FC and

HC models, respectively. In terms of generalization, FC1, FC2, FC3

and HC3 start overfitting after ~20 epochs. We tried to alleviate this

problem by increasing the dropout values and applying L2

regularization, but this resulted in higher values of validation loss. In

the case of CNN models, no overfitting is observed, despite the fact

that no regularization is applied. This can be explained by the nature

of CNNs that enables weight sharing and hence less tend to overfit.

3889

 Our goal is to measure the reconstruction quality in terms of human

hearing. As we are not aware of any quantitative measure that

correlates well with human hearing, we propose several additional

measures to evaluate the models performance in multiple resolutions:

accuracy per group of parameters and reconstruction quality in the

frequency domain.

 The second measure we use is the top-k mean accuracy. For a given

test example, the top-k accuracy function outputs 1 if the correct class

rank is among the top k predicted classes by the model and 0

otherwise. The top-k mean accuracy is obtained by computing the

top-k accuracy for each test example and then taking the mean across

all examples. We compute the top-k mean accuracy per synthesizer

parameter for W = 1, … ,5. Then, we group the synthesizer parameters

according to functionality groups: Filter group that contains the

parameter �XE�, � . Notes, Amplitude LFO, Frequency LFO and

Oscillators Amplitude groups that contain the parameters

��, ��, ��, �� for all �, respectively. The last two groups are the

Amplitude ADSR group that contains the parameters �,), �, � and the

All group that contains all the synthesizer parameters. For each

combination of model and parameters group, we compute the mean

of the top-k mean accuracy across all parameters in that group and

for all k values. The reason we divide the parameters into different

groups is in order to inspect the models performance w.r.t. each

functional in the synthesizer. Figure 3 presents top-k mean accuracy

as a function of k for each combination of parameter group and

model. The best accuracy values are obtained for the Filter and

Amplitude LFO groups, where the margin between the CNN and FC

models is the largest. Furthermore, in all graphs the CNNs

significantly outperform the FC models. Finally, we observe that for

the Amplitude ADSR parameter group, ConvE2E produces the best

accuracy graph followed by HC3 as the second best. This is directly

related to the ability of these models to predict the attack parameter

significantly better than the other models. An interesting pattern is

further observed in the Notes graph: while ConvE2E underperforms

Conv4 – Conv6XL for k = 1. It becomes the champion for k > 1. This

means that ConvE2E manages to infer a better ranking of musical

notes when considering the predictions beyond the top-1.

 Next, we investigate how well the different models reconstruct the

input signals in the frequency domain. The evaluation focuses on a

subset of the models that performed the best among each model type

(Linear FC, non-linear FCs, HCs and CNNs). Specifically, we

compute for each signal �� in the test set its STFT spectrogram LG.

Then, L� is fed to the model to produce the synthesizer parameter

configuration, which is then used to synthesize an output signal �Y
using the synthesizer. Finally, we compute the STFT spectrogram LY

using �Y. Note that in the case of ConvE2E and HC models, �� is used

as input (HC models further require the preprocessing of [10] on ��).

 The spectrogram reconstruction quality is measured by the Pearson

Correlation Coefficient (PCC) Z��, �	 = XY���, �	/[\[]. Since Z is

defined over vectors rather than matrices, we flatten LG and L! to

vectors by performing rows concatenation and then compute their

PCC value. In addition, we evaluate the reconstruction quality in the

Fourier domain. To this end, we compute the PCC over the absolute

of the Fourier Transforms (FT) of �G and �!. Different from the

STFT, which provides the frequency information per short time

frames, the FT provides a global representation that aggregates the

frequency information from the entire signal.

 Table 1 presents the mean and median values of Z (x100) that were

computed over the test set for each combination of domain and

model. We observe that the same trends from Figs. 2 and 3 also exist

in Tab. 1. Spectrogram based CNNs performs the best ordered by

their depth. ConvE2E outperforms the HC3 and HC models. FC

models perform the worst. Hence, we conclude that network depth

contributes to the reconstruction quality as well.

 Lastly, audio and visual examples of reconstructions (for samples

that are drawn randomly from the test set) are provided in [15]. These

examples correlates well with the trends that exist in Tab. 1 and

further demonstrate the effectiveness of the proposed models.

6. CONCLUSION

We proposed end to end and spectrogram based CNNs for the

synthesizer parameter estimation task. Empirical results show that the

proposed models outperform HC and FC models. Network depth is

found to be an important factor that contributes to the prediction

accuracy. In the future, we plan to extend the evaluation to the cross-

domain scenario and investigate very deep models such as [25, 26].

We further plan to include the synthesizer function in the

backpropagation process, in order to train models to reconstruct the

STFT directly.

 Table 1. Reconstruction quality for the evaluated models in frequency domains. ^ values are x100.

Measure/Model Conv6XL Conv6 Conv5 Conv4 ConvE2E HC3 HC [10] FC2 FC Linear

^ mean (STFT) 92.04 91.38 91.09 90.97 88.33 88.04 84.62 77.22 75.24

^ median (STFT) 95.61 95.39 95.1 94.99 93.41 92.59 88.53 82.32 80.83

^ mean (FT) 76.13 74.28 73.46 73.29 71.36 64.39 59.68 58.18 54.74

^ median (FT) 90.22 88 87.4 86.29 80.61 68.07 59.73 57.19 51.15

Figure 2. Training and validation loss graphs for all models.

Figure 3. Top-k mean accuracy graphs per parameters group.

3890

7. REFERENCES

[1] M. Russ, Sound Synthesis and Sampling. 2009.

[2] E. J. Humphrey, J. P. Bello, and Y. LeCun, “Moving Beyond
Feature Design: Deep Architectures and Automatic Feature Learning
in Music Informatics,” International Society for Music Information
Retrieval Conference (ISMIR), no. Ismir, pp. 403–408, 2012.

[3] E. J. Humphrey, J. P. Bello, and Y. Lecun, “Feature learning and
deep architectures: New directions for music informatics,” Journal of
Intelligent Information Systems, vol. 41, no. 3, pp. 461–481, 2013.

[4] S. Dieleman and B. Schrauwen, “End-to-end learning for music
audio,” in ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 2014, pp. 6964–6968.

[5] K. Choi, G. Fazekas, and M. Sandler, “Automatic tagging using
deep convolutional neural networks,” International Society for Music
Information Retrieval Conference, pp. 805–811, 2016.

[6] A. Goodfellow, Ian, Bengio, Yoshua, Courville, “Deep
Learning,” MIT Press, 2016.

[7] J. Riionheimo and V. Välimäki, “Parameter estimation of a
plucked string synthesis model using a genetic algorithm with
perceptual fitness calculation,” Eurasip Journal on Applied Signal
Processing, vol. 2003, no. 8, pp. 791–805, 2003.

[8] A. W. Y. Su and S. F. Liang, “A class of physical modeling
recurrent networks for analysis/synthesis of plucked string
instruments,” IEEE Transactions on Neural Networks, vol. 13, no. 5,
pp. 1137–1148, 2002.

[9] M. Sterling and M. Bocko, “Empirical physical modeling for
bowed string instruments,” in ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing -
Proceedings, 2010, pp. 433–436.

[10] K. Itoyama and H. G. Okuno, “Parameter Estimation of Virtual
Musical Instrument Synthesizers,” in Proceedings of ICMC, 2014,
pp. 95–101.

[11] http://www.softsynth.com/jsyn

[12] Van Den Oord Aaron and K. Kavukcuoglu, “WaveNet: A
Generative Model for Raw Audio,” arXiv preprint arXiv:160903499,
2016.

[13] C. M. Bishop, Pattern Recognition and Machine Learning, vol.
4, no. 4. 2006.

[14] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic
Optimization,” International Conference on Learning
Representations 2015, pp. 1–15, 2015.

[15] https://github.com/deepsynth/deepsynth

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,” in

Advances in Neural Information Processing Systems 25, 2012, pp.

1097–1105.

[17] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition

with deep recurrent neural networks,” in {IEEE} International

Conference on Acoustics, Speech and Signal Processing, {ICASSP}

2013, Vancouver, BC, Canada, May 26-31, 2013, 2013, pp. 6645–

6649.

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A Neural

Probabilistic Language Model,” J. Mach. Learn. Res., vol. 3, pp.

1137–1155, Mar. 2003.

[19] W. Yih, K. Toutanova, J. C. Platt, and C. Meek, “Learning

Discriminative Projections for Text Similarity Measures,” in

Proceedings of the Fifteenth Conference on Computational Natural

Language Learning, 2011, pp. 247–256.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed Representations of Words and Phrases and their

Compositionality,” in Advances in Neural Information Processing

Systems 26, 2013

[21] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,

and P. Kuksa, “Natural Language Processing (Almost) from

Scratch,” J. Mach. Learn. Res., vol. 12, pp. 2493–2537, Nov. 2011.

[22] Y. Kim, “Convolutional Neural Networks for Sentence
Classification,” Proc. 2014 Conf. Empir. Methods Nat. Lang.
Process. (EMNLP 2014), pp. 1746–1751, 2014.

[23] Barkan, O. Bayesian Neural Word Embedding. AAAI 2017.

[24] Barkan O, Koenigstein N. Item2vec: neural item embedding for
collaborative filtering. In IEEE Machine Learning for Signal
Processing (MLSP) 2016 Sep 13 (pp. 1-6).

[25] He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition 2016 (pp. 770-778).

[26] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely
Connected Convolutional Networks. In CVPR 2017 Jul 21 (Vol. 1,
No. 2, p. 3).

3891

		2019-03-18T10:56:26-0500
	Preflight Ticket Signature

