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ABSTRACT

In the last years, Neural Networks have enriched the state-
of-the-art in probabilistic modeling. This is principally due to
the advances in deep learning which allow a better understan-
ding of complex systems. However, the stochastic represen-
tation of spatio-temporal fields is still an open challenge that
may benefit from the recent advances in probabilistic mode-
lization. In this work, we explore neural network to derive
a stochastic representation of spatio-temporal dynamical sys-
tems based on ensemble forecasting. Trough the implemen-
tation of our stochastic model in a classical Kalman filtering
scheme, we demonstrate the relevance of the proposed archi-
tecture in the reconstruction of geophysical fields with respect
to the state-of-the-art approaches.

Index Terms— Probabilistic modeling, Dynamical sys-
tems, Neural networks, Kalman filter

1. PROBLEM STATEMENT AND RELATED WORK

The high-resolution monitoring of sea surface geophysi-
cal parameters is one of the significant challenges in ocea-
nography. Producing high resolution gridded spatio-temporal
products of physical variables such as sea surface tempera-
ture, sea surface height and sea surface salinity is of key in-
terest for a variety of scientific fields and applications, from
numerical weather prediction to maritime operations [1, 2, 3].

Data assimilation is known as the state-of-the-art tech-
niques used for the reconstruction of such geophysical fields.
They are present in two main categories : variational and sto-
chastic data assimilation. While variational data assimilation
relies on the minimization of a cost function and requires the
computation of the cost function gradient through the adjoint
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of the dynamical model [4]. Stochastic data assimilation in-
volves Monte Carlo strategies through an ensemble formula-
tion to explore the state space of our physical model [5].

The Key feature of both variational and stochastic data as-
similation techniques is the mathematical formulation of the
dynamical model describing the temporal evolution of our
physical variables. The definition of this dynamical model
dramatically limits the use of data assimilation in the case
of geophysical fields interpolation. First, analytical modeling
techniques may result in complex representations that can not
be used in assimilation schemes due to their numerical com-
plexity [6]. Complex dynamics may also involve uncertain
parameterizations, whereas simplified parameterizations may
only hold for specific dynamical modes [7].

Data-driven strategies in the other hand arise as a relevant
alternative to model-driven techniques[8]. several representa-
tions have shown a great success in forecasting physical dy-
namics in several domains [9, 8, 10]. However, when dealing
with chaotic systems such as oceanic tracers, modeling the
variability in terms of probabilistic representation is still an
open challenge due to the complexity of such dynamics.

Neural networks, especially deep models, has become the
state-of-the-art in a range of machine learning applications.
Among others, neural networks with stochastic layers and ge-
nerative models have significantly advanced the field of pro-
babilistic modeling for complex processes and signals [11,
12].

In this study, we are specifically interested in the proba-
bilistic modeling of spatio-temporal fields for simulation and
assimilation issues. We investigate stochastic data-driven re-
presentations of spatio-temporal dynamics based on neural
networks. The key idea of our work is to design a Gaussian
neural-network representation for the propagation of spatio-
temporal dynamics. Inspired by the variational approximation
based techniques [11], the proposed approach can be regar-
ded as a neural-network representation of the ensemble fo-
recasting based scheme classically used in Bayesian filters
(e.g., particle filters, Kalman filters, Ensemble Kalman fil-
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ters) to propagate probabilistic representations of non-linear
dynamics [5]. The proposed neural network representation is
learnt from data. It can be combined with a classic Kalman re-
cursion to address assimilation issues. Overall, our key contri-
butions are three-fold : i) we propose a novel Gaussian NN-
based representation of high-dimensional geophysical dyna-
mics, ii) we derive the associated NN-based Kalman filtering
scheme for spatio-temporal interpolation issues, iii) We de-
monstrate the relevance of these contributions with respect to
state-of-the-art approaches [13, 14, 15] for an application to
the spatio-temporal interpolation of satellite-derived data.

This paper is organized as follows. Section 2 describes
the proposed stochastic neural-network dynamical model and
its implementation in a Kalman filtering scheme. Section 3
presents the results of the numerical experiments. We further
discuss our contributions in Section 4.

2. LEARNING GAUSSIAN DYNAMICAL MODELS

2.1. Proposed stochastic dynamical model

We aim to model the propagation of a Gaussian approxi-
mation (i.e., a mean and covariance) of the true dynamics
of the system of interest. Contrary to parametric techniques
[16, 17] based on an analytic PDE formulation of the propaga-
tion of a Gaussian dynamical model using specific dynamical
priors, we aim to benefit from the flexibility and genericity of
neural-network architectures to learn our Gaussian dynamical
model from a representative training dataset.

Formally, assuming that we are provided with a dataset
X0:T of our physical system, our objective is to learn a pro-
babilistic representation of the dynamical model through a
parametric model of the conditional distribution of state va-
riable Xt given Xt−1. Considering a Gaussian approxima-
tion, it comes to the following model :

Xt|Xt−1 ∼ N (Xt = F(Xt−1),Σt = FΣ(Xt−1,Σt)) (1)

where functions F ,FΣ are neural networks with parameter
vectors θ = (θµ, θΣ).

Following our previous works on analog data assimilation
[18, 15], we consider a patch-based representation as a mean
to decompose space-time scales as well as to provide an ex-
plicit relationship between the global and local (patch-level)
representations. Regarding the mean model F , the proposed
architecture proceeds as follows :

— At a given time t, the first layer of the network, which
is parameter-free in terms of training, comes to de-
compose an input field xt into a collection of Np P ×
P patches xPs,t, where P is the width and height of
each patch and s ∈ [1, ..., Np] the patch location in
the global field. Each patch is decomposed onto an
EOF (Empirical Orthogonal Function) basis B accor-
ding to :

zPs,t = xPs,tBT (2)

with zPs,t the EOF decomposition of the patch xPs,t.
The EOF decomposition matrix B is trained offline as
a preprocessing step ;

— The second layer implements a numerical integration
scheme (typically, an Euler or 4th-order Runge-Kutta
scheme) using a patch-level dynamical model FPs

to predict zPs,t+1. For patch-level models FPs , we
consider residual architectures [11] with a bilinear
parameterization [19] ;

— The third layer is a reconstruction networkFr. It com-
bines the predicted patches xPs,t+1 = zPs,t+1B to
reconstruct the output field xt+1. This reconstruction
network Fr involves a convolution neural network
[20].

The details of the considered parameterizations for the second
and third layers are given in Section 3. To train the mean dy-
namical model F , we apply a two-step procedure. We first
learn the local dynamical models FPs , s ∈ [1, ..., Np] based
on the minimization of the EOF-patch based forecasting er-
ror. The reconstruction network Fr is then optimized using
the same criterion over the global field.

Due to dimensionality issues, one cannot expect to model
the full covariance of the field. We benefit from the patch-
level representation to investigate a block-diagonal approxi-
mation of the covariance structure. It comes to consider a
diagonal covariance parameterization of the patch-level cova-
riance matrix in the EOF space. Formally, the block-diagonal
covariance model is learnt as follows :

— For the tth state Xt in our training set, a patch-based
projection is first performed to compute the states in
the EOF space zPs,t according to equation 2.

— For each s ∈ [1, ..., Np], an ensemble EPs,t =

{z(1)
Ps,t

, ..., z
(M)
Ps,t
} of size M is sampled from a Gaus-

sian distribution with mean zPs,t and covariance ma-
trix Σ0 computed as the covariance matrix of our
training data in the EOF space.

— From the ensemble data EPs,t, we build a fore-
casting ensemble FPs(EPs,t) by applying to each
sample the trained model FPs . A neural network
covariance model FPs

D,Σ is then trained to forecast
a diagonal covariance matrix in the EOF space
ΣEOFPs,t+1 = FPs

D,Σ(zPs,t,Σ0) using the ensemble da-
taset {EPs,t−1,FPs(EPs,t−1)} according to a ML
criterion.

— Ones our EOF covariance model learned, the patch-
based covariance modelFPs

Σ is deduced according to :

FPs
Σ (xPs,t+1,ΣPs,t+1) =BtΨ(ΣPs,t,Σ0)

×FPs
D,Σ(zPs,t,Σ0) · B

(3)

where Ψ a scaling function.
— The global covariance model FΣ is given by the re-

combination of the Np local patch-level covariance
models FPs

Σ .
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The parametrization of the patch-based covariance model
in the EOF-space allows us learning only the variance vector
of each patch sins the EOF components are supposed to be
orthogonal (resulting in insignificant covariance components
in the EOF-space). However, and to illustrate the relevance of
the proposed patch-based parametrization of the covariance
matrix in the EOF-space, we also investigate a diagonal cova-
riance matrix model in the patch space. according to :

FPs
Σ (xPs,t+1,ΣPs,t+1) = Ψ(ΣPs,t,Σ0)·FPs

D,,Σ(xPs,t,Σ0) (4)

The aim of using an ensemble likelihood optimization cri-
teria is that geophysical dynamical models usually present
complex, possibly chaotic, dynamical behaviours. Therefore,
using a single forecast to characterize the variability of the
dynamical model can result in an underestimation (or an ove-
restimation) of the covariance matrix. The proposed Monte
Carlo ML criterion explores the one-step prediction variabi-
lity resulting in a parametric Gaussian approximation of an
ensemble forecasting.

2.2. Application to data assimilation

Given this neural-network representation of the condi-
tional distribution Xt|Xt−1, we can derive an associated
Kalman-based filtering under the assumption that the obser-
vation model is linear and Gaussian.

In contrast to classical non linear filtering frameworks
illustrated for instance by Extended Kalman filtering and
Ensemble Kalman filtering. The proposed Kalman-based fil-
tering technique directly propagates the Gaussian pdf (see
equation 5) at a given time step (using the Gaussian transition
model). It simply comes to apply the Kalman recursion with
the mean and covariance propagated by the trained neural
networks :

(X−t+1,Σ
−
t+1) = (F(X+

t ),FΣ(X+
t ,Σ+

t )) (5)

X+
t+1 = X−t+1 + Kt+1[Yt+1 −Ht+1X

−
t+1] (6)

Kt+1 = Σ−t+1H
t
t+1[Ht+1Σ−t+1H

t
t+1 + Rt]

−1 (7)

where Ht+1 corresponds to some linear observation models.
The superscript (-) refers to the forecasting of the mean of
the state variable x−t+1 and of its covariance matrix Σ−t+1, the
superscript (+) refers in the other hand to the assimilated mean
x+
t+1 and covariance Σ+

t+1. Rt is a Gaussian noise covariance
matrix.

As explained above, we consider two different paramete-
rizations of the covariance model FΣ. The key aspect of this
model is the structure of the patch based covariance opera-
torFPs

Σ . Different assimilation techniques could be envisaged
depending on its parametrization :

— Modeling the patch based covariance in the EOF
space and projecting it back to the patch space which
results in a block-diagonal covariance matrix (illus-
trated by equation 3) : PB-NNKF-EOF;

— Directly modeling the variance vector of each patch
resulting on a diagonal covariance matrix (illustrated
by equation 4) : PB-NNKF.

3. NUMERICAL EXPERIMENTS

3.1. Dataset description

As a case-study, we address the spatio-temporal interpo-
lation of satellite-derived sea surface temperature (SST) fields
associated with infrared sensors. The time series is delivered
by the UK Met Office [13] from January 2008 to December
2015. The spatial resolution of our SST field is 0.05◦ and the
temporal resolution h = 1 day. The data from 2008 to 2014
were used as training data and we tested our approach on the
2015 data. To perform a quantitative evaluation, we simulated
realistic spatio-temporal cloud patterns over the test set using
the METOP-AVHRR masks. This sensor is highly sensitive
to the cloud cover and results in very high missing data rates.

As case-study region, we select an area off South Africa
(from 2.5◦E, 38.75◦S to 32.5◦E, 58.75◦S). This region in-
volves complex fine-scale SST dynamics (e.g., fronts, fila-
ments). It makes it relevant for the considered quantitative
evaluation.

3.2. Experimental setting

The proposed stochastic dynamical model exploits patch-
level representations with non-overlapping 20 × 20 patches.
Each patch Ps is then projected into an EOF basis learnt
from the training data. We keep the first 50 EOF components,
which amount to encode 95% of the total variance. For the
patch-level NN model FPs , we use a bilinear residual neu-
ral network architecture as proposed in [10] with 60 linear
neurons, 100 bilinear neurons and 10 fully-connected layers
with a Relu activation. The reconstruction model Fr is a
convolutional neural network with 3 convolutional layers.
The first two layers comprise 64 filters of size 3 × 3 with
a Relu activation and the last layer is a linear convolutio-
nal layer with one filter. Regarding covariance model FPs

D ,
we consider a diagonal covariance model within each patch.
Each element of diagonal involves a 3-layer MLP with 4
neurons and Relu activation functions on the hidden layers
and a softplus activation in the output layer. With a view to
evaluating the EOF-based covariance parameterization, we
consider both PB-NNKF-EOF and PB-NNKF schemes. A
constant scaling function Ψ() = 1 in equations 3 and 4 led to
the best performances in our experiments.

We perform a quantitative analysis of the interpolation
performance of the proposed schemes with respect to an op-
timal interpolation, the analog data assimilation [15] and the
EOF based interpolation method VE-DINEOF. The conside-
red parameter setting is as follows :

— Optimal interpolation (OI) : We use a Gaussian ker-
nel with a spatial correlation length of 100km and a
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Fig. 1: Interpolation of the SST field on July 19 2015 : first row, the reference SST and the observation with missing data (here, 82% of
missing data) ; second row, interpolation results using respectively OI, PB-VE-DINEOF, LAN-ENKF, PB-NN-NNKF, PB-NN-NNKF-EOF.

temporal resolution length of 3 days. These parame-
ters were empirically tuned for the considered dataset
using a cross-validation experiment.

— Analog data assimilation (LAF-EnKF) : We test the
local analog data assimilation scheme [15, 21]. Simi-
larly to the proposed architecture, we consider 20×20
patches and 50-dimensional EOF decomposition with
an overlapping of 10 pixels. We let the reader refer to
[15, 21] for a detailed description of this data-driven
approach, which relies on nearest-neighbor regression
techniques.

— EOF based reconstruction (PB-VE-DINEOF) : We
also compare our approach to the state-of-the-art in-
terpolation scheme based on the projection of our
observations with missing data on an EOF basis [14].
The SST field is here decomposed as described in the
analog data assimilation application into a collection
of 20 × 20 patches with 10 pixels overlapping. Each
patch is then reconstructed using the VE-DINEOF
method.

3.3. Results

We report the mean interpolation performance in Tab.
1. Figure 1 illustrates an interpolation example of the tested
methods. The proposed NN-based scheme (PB-NNKF-EOF)
leads to very significant improvements with respect to the
optimal interpolation in terms of RMSE and correlation coef-
ficients, which emphasizes fine-scale structures (e.g., relative
improvement of the RMSE above 50% for missing data
areas). A clear gain is also exhibited w.r.t. analog data assi-
milation and PB-VE-DINEOF schemes with a relative gain
greater than 20% in terms of RMSE. Although the consi-
dered NN-based representation exploits non-overlapping
patches, we still come up with significant improvements
w.r.t AnDA scheme which involve a 50% overlapping rate

Model Entire map Missing data areas

OI RMSE 0.76 0.75
Correlation 99.35% 99.37%

PB-VE-DINEOF RMSE 0.54 0.54
Correlation 99.68% 99.66%

LAF-EnKF RMSE 0.43 0.42
Correlation 99.79% 99.77%

PB-NNKF RMSE 0.51 0.51
Correlation 99.75% 99.71%

PB-NNKF-EOF RMSE 0.33 0.35
Correlation 99.87% 99.85%

Table 1: SST interpolation experiment : Mean reconstruction cor-
relation coefficient and RMSE over the SST time series.

between patches. This clearly illustrates the relevance of
NN-based representation, which fully embeds the direct and
inverse mappings between the SST field and its patch-level
representation. Interestingly, Tab.1 also reveals the impor-
tance of the EOF-based parameterization of the NN-based
covariance model (Equation 3) in the improvement of inter-
polation results w.r.t. AnDA schemes.

4. CONCLUSION

In this work, we address stochastic data driven represen-
tations for spatio-temporal fields identification. we rely on
neural networks and ensemble forecasting to derive a neu-
ral network Gaussian dynamical model. From our numerical
experiments, combining our probabilistic representation with
Kalman based data assimilation techniques outperforms clas-
sical state-of-the-art techniques in spatio-temporal fields re-
construction.
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