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ABSTRACT
The paper proposes a Hybrid Deep Neural Network (HDNN) frame-
work for remaining useful life (RUL) estimation for prognostic
health management applications. The proposed HDNN framework
is the first hybrid model designed for RUL estimation that integrates
two deep learning architectures simultaneously and in a parallel
fashion. More specifically, in contrary to the majority of existing
data-driven prognostic approaches for RUL estimation, which are
developed based on a single deep model and can hardly maintain
satisfactory generalization performance across various prognostic
scenarios, the proposed HDNN framework consists of two paral-
lel paths (one based on Long Short Term Memory (LSTM) and
one based on convolutional neural networks (CNN)) followed by
a fully connected multilayer fusion neural network, which acts as
the fusion center combining the outputs of the two paths to form
the target RUL. The proposed HDNN framework is tested on the
NASA commercial modular aero-propulsion system simulation (C-
MAPSS) dataset. Our comprehensive experiments and comparisons
with several recently proposed RUL estimation methodologies de-
veloped based on the same data-sets show that the proposed HDNN
framework significantly outperforms all its counterparts in the com-
plicated prognostic scenarios with increased number of operating
conditions and fault modes.

Index Terms— Deep Learning, Hybrid models, Remaining
Useful Life (RUL), Long Short-Term Memory Network (LSTM),
Convolutional Neural Network (CNN), Machine Health Monitoring.

1. INTRODUCTION

Aging critical infrastructures and valuable machineries together with
recent catastrophic incidents such as the collapse of Morandi bridge
in the Italian city of Genoa, have drifted the signal processing away
from pure analysis to call for an urgent quest to design advanced and
innovative data-driven solutions and efficiently incorporate multi-
sensor streaming data sources for industrial development. Prognos-
tic health management (PHM) is among the most critical disciplines
that employs the advancement of the great interdependency between
signal processing and machine learning techniques to form a key
enabling technology to provide an early warning of failure, in sev-
eral domains ranging from manufacturing and industrial systems to
transportation and aerospace. In this regard, the paper proposes an
advanced data-driven and multiple model framework, referred to as
the hybrid deep neural network model (HDNN), to accurately esti-
mate the remaining useful life (RUL) of a critical system.

The focus of prognostic is mainly on predicting the residual life-
time during which a device can perform its intended function, i.e.,
estimating the RUL [1] of a system. The RUL estimation has an im-
portant role in different areas including aircraft industries, medical

equipment, and power plants, that inspired the researchers to develop
a variety of RUL prediction approaches [2–6]. The RUL estimation
methodologies can be classified into three main categories: (i) Statis-
tical/Model based approaches; (ii) Data-driven techniques, and; (iii)
Hybrid solutions [7]. The first category is the most common method
that hardly fit to different prognostic applications. Recently another
attractive alternative (Item (ii)) using deep neural network, which is
equipped to handle prognostic issues of complex mechanical sys-
tems whose degradation processes are difficult to be interrelated by
statistical-based solutions. However most of the existing approaches
belonging to the second category, only incorporate one single model,
which can hardly maintain good generalization performance across
various prognostic scenarios, especially when this model is well con-
figured for a certain scenario. The paper addresses this gap and fo-
cuses on hybrid (multiple-model) solutions (Item (iii)), which have
great potentials to address this issue and significantly improve the
RUL estimation accuracy.

Prior Work: Recently, different researchers have demonstrated
revolutionary progress of using deep learning models by utilizing
variety of deep architectures to tackle different tasks of signifi-
cant engineering importance within manufacturing and industrial
systems. For example, References [8–15] proposed different frame-
works based on convolutional neural networks (CNN). In addition
to the CNNs, long short term memory (LSTM) [16–18] is another
main architecture that is recently utilized in deep learning. All the
aforementioned approaches and the majority of existing RUL es-
timation methods only incorporate a single deep neural network
technique. A hybrid approach, on the other hand, has the objective
to combine advantages of different techniques through their integra-
tion such that the results can be aggregated to improve the prediction
performance [19]. Zhang et al. [20] built a LSTM recurrent neural
network (LSTM-RNN) to capture and learn the long-term dependen-
cies among the degraded capacities of lithium ion batteries. Zhao et
al. [21] introduced another hybrid model, where a deep neural net-
work (referred to as Convolutional Bi-directional Long Short-Term
Memory networks (CBLSTM)) has been built to address tool wear
prediction tasks. Finally, Hinchi et al. [22] proposed a deep neural
network for rolling elements bearing prognostic, by integrating a
convolutional layer with LSTM layer (in a series fashion). However,
to the best of our knowledge, only the above mentioned few attempts
have been made towards development of hybrid solutions for RUL
estimation. The paper addresses this gap.

Contributions: The paper proposes the HDNN framework for RUL
estimation, as shown in Fig. 1. The proposed HDNN framework con-
sists of two parallel paths (one LSTM and one CNN) followed by
fully connected multilayer neural network, which fuses the output of
each path to form the target RUL. The LSTM is used to extract tem-
poral features while simultaneously the CNN is utilized to extract
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spatial features. It is worth mentioning that our proposed HDNN is
the first hybrid deep neural network model for RUL estimation, that
integrates two deep learning models to achieve this task. The pro-
posed HDNN framework is tested and validated using the commer-
cial modular aero-propulsion system simulation (C-MAPSS) data set
by NASA [23]. Our comprehensive experiments and comparisons
with over 5 recently proposed RUL estimation algorithms developed
based on the same data-sets show that the proposed HDNN frame-
work significantly outperforms all its counterparts especially in the
complicated prognostic scenarios with increased number of operat-
ing conditions and fault modes.

The reminder of the paper is organized as follows: Section 2
develops the HDNN model. Experimental results and comparisons
are provided in Section 3. Finally, Section 4 concludes the paper.

2. THE HDNN MODEL

In the proposed framework, a sliding window strategy is adopted
to use the multi-variate temporal information, since a temporal se-
quence data provides more information in comparison to a multi-
variate data point sampled at a single time step [24]. The input of the
HDNN model is a two dimensional matrix containing rtw (as the
size of the sliding window) with rf (as the number of the selected
features). In the proposed HDNN framework, different values of rtw
have been considered for different sub-datasets of the C-MAPSS
datasets. Moreover, the step size of sliding a window is chosen to
be 1. The segmented multivariate time series matrix (rf × rtw) is
fed into the CNN path of the proposed model, while for the LSTM
path, each column of the matrix (rf × rtw) will be considered as an
input to the LSTM at each time step. The structure of the three main
components of the HDNN framework are as follows:

• CNN Path: CNN is a multi-stage neural network which com-
posed of some filter stages and one classification stage [25].
Three convolution layers are stacked in the CNN path of the
HDNN model, for spatial features extraction. In the first two
layers, 2-pairs of convolution layers and max pooling layers
have been used, the convolution layers have the same config-
urations, i.e., 10 filters of size (10 × 1) are used, while the
max pooling layers’ filter size is (2 × 1). The third convolu-
tion layer is designed with one filter of size (3× 1) to join the
previous feature maps.

• LSTM Path: The LSTMs are designed to overcome the van-
ishing and exploding gradient problem of the traditional Re-
current neural network (RNN) [26]. Three LSTM layers are
stacked in the LSTM path of the HDNN model for tempo-
ral features extraction. Each of the first two layers is defined
by 32 cell structure, while the third layer is based on 64 cell
structure and repeating cells within the LSTM layer have the
same structure and parameter values.

• Fusion Path: Three fully connected layers for regression
purpose to estimate the RUL. Each of the first two fusion
layers has 100 neurons and uses “tanh” activation function.
The third layer has 1 neuron and uses Rectified Linear Unit
(ReLU) activation function. The input to the fusion layers
is constructed as follows: The output of the CNN path (a 2-
dimensional feature map) is flattened and then concatenated
with the output features of the LSTM path. The resultant
vector will be applied as the fusion input.

• Training: The objective of the training process is to minimize
the cost function by obtaining optimal parameters (weights
and biases) [27]. The proposed approach aims to minimize

Table 1. Data Set Details (Simulated From C-MAPSS) [32].

Dataset
C-MAPSS

FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249
Test Trajectories 100 259 100 248
Conditions 1 6 1 6
Fault Modes 1 1 2 2

the mean squared error (MSE) as it is the adopted cost func-
tion in this study, which is given by MSE = 1

Mtr

∑Mtr
i=1 h2

i ,
where Mtr is the total number of training data samples, and
hi = RULi−RULi, i.e., the estimated RUL - true RUL with
respect to the ith data point. The mini batch gradient descent
method [28] is used and the batch size is set equal to 512. In
addition the Adam algorithm [29] is used for optimization.

3. EXPERIMENTS

In this section, we evaluate the performance of the proposed HDNN
framework. First, the dataset descriptions is provided in Sub-
section 3.1 followed by the details of the experimental setup. Finally,
comparison results are shown and discussed in Sub-section 3.4.

3.1. NASA C-MAPSS Data Set

In this paper, the proposed approach (HDNN) is implemented and
evaluated based on the degradation data sets of the turbofan engine
provided in References [23] and [30]. The NASA C-MAPSS data
set is a widely used benchmark data, generated using the NASA’s
propriety system level model-based simulation program software
(named C-MAPSS). The C-MAPSS is a software for simulating the
effects of faults and deterioration at different operating conditions in
the main five rotating components (Fan, Low Pressure Compressor,
High Pressure Compressor (HPC), High Pressure Turbine, and Low
Pressure Turbine) found in a large commercial turbofan engine. The
data set has divided into four sub-data sets (labeled from FD001
to FD004) with different number of operating conditions and fault
modes. Each sub-data set is further divided into training and test
subsets. The data sets outlined in Table 1. The data sets are ar-
ranged in an N -by-26 matrix, where N corresponds to the number
of data points in each data set. Each row is a snapshot of data taken
during a single operating time cycle, which includes 26 columns
and each column represents a different variable. The 26 columns
of data consist of two index values representing the engine number
and the current operational cycle number, three operational settings
that have a substantial effect on engine performance, as well as 21
sensor values, details of which can be found in [31]. Each trajectory
within the data sets simulates the lifetime of an engine. While each
engine is simulated with different initial conditions, the operational
status of each engine is healthy in the early stage and begins to
degrade as time progresses until a failure occurs. For each engine
trajectory within the training sets, the last data entry corresponds to
the moment the engine is declared unhealthy. While, trajectories in
the test sets terminate at some time prior to failure and the target
is to predict the number of cycles until the end of product lifetime
for each engine commonly referred to as the RUL. The actual RUL
value of the test trajectories for the C-MAPSS data set was made
available to the public.

3.1.1. Operating Conditions and Fault Modes

The data points are classified into different distinct clusters using
two factors, namely, the operating conditions and the associated fault
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Fig. 1. The proposed hybrid deep neural network (HDNN) framework.

modes. As for the operating conditions, FD001 and FD003 are sim-
ulated at a single point (sea level), while FD002 and FD004 are
simulated at six different operating conditions. For the fault modes,
FD001 and FD002 are simulated with only HPC degradation, while
FD003 and FD004 are simulated with both HPC and fan degradation
resulting in more complex and challenging RUL predictions.

3.2. Data Normalization

A group of 14 sensor outcomes have been selected following Refer-
ence [33] as some sensor readings are not informative for RUL esti-
mation, since they have almost constant outputs in the engine’s life
time. Min-max normalization has been used to enable the unbiased
contribution from the output of each sensor, i.e.,

x̄i =
2(xi − min xi)

max xi − min xi
− 1, (1)

where xi is the time sequence of ith sensor measurements, and x̄i is
the normalized sensor data. This normalization will guarantee equal
contribution from all features across all operating conditions [34].
The normalized data will be between [-1,1].

3.3. Evaluation Metrics

In this paper, two performance measures, i.e., scoring function, and
Root Mean Square Error (RMSE), are used as briefly outlined below:

(1) Scoring Function: The scoring function used in this paper is
the function that employed by the International Conference
on Prognostic and Health Management (PHM08) Data Chal-
lenge and is given by

S =

n∑
i=1

si,where si =

{
e−

hi
13 − 1 for hi < 0

e
hi
10 − 1 for hi ≥ 0,

where s is the computed score, n is the total number of testing
data samples, and hi = RULi−RULi (estimated RUL - true
RUL, with respect to the ith data point).

(2) The RMSE: It is commonly used as a performance measure
since it gives equal weights for both early and late predic-
tions. The formulation of the RMSE is given by RMSE =√

1
n

∑n
i=1 h

2
i .

For this data-set a piece-wise linear RUL target function was pro-
posed [34], which sets the maximum RUL to a constant value (based
on the observations) and then the health of the system degrades lin-
early with usage.

3.4. Results

In this sub-section, we present various experimental results to eval-
uate the performance of the proposed HDNN framework for RUL
estimation.

Table 2. The results of 30 time window size.

Metrics FD001 FD002 FD003 FD004
Score 245 1282.42 287.72 1527.42
RMSE 13.017 15.24 12.22 18.156

3.4.1. The RUL Estimation Results

Figs. 2, and 3 present the RUL prediction results over two complex
datasets (i.e., FD002 and FD004). in Figs 2(a) and (b) testing engines
are sorted in an ascending order (from small to large). Figs. 2(a)-(d)
show the prediction results associated with the last recorded data
point for both datasets. It is noteworthy that the number of test cases
in each dataset is different, where 256 and 248 engines in FD002
and FD004, respectively. It is observed that the predicted RUL val-
ues closely follow their ground truth. Two key point can be high-
lighted: (i) First, it can be noticed that engines with lower RUL are
clearly with higher accuracy. This is particularly important as lower
RUL translates to closeness of a potential failure and better accura-
cies are required to perform CBM actions at optimum times to avoid
catastrophic failures, and; (ii) The results shown in Figs. 2(a) and
(b) are significantly interesting as these are corresponding to the two
most complex scenarios and typically existing solutions fail to pro-
vide reliable results for these two cases. Figs. 3(a) and (b) predicted
RUL values for a sample unit of both dataset (selected in random). In
par with our previous results, it is noticed that the proposed HDNN
framework performs clearly well over both datasets, which are con-
sidered extremely complex scenarios and existing algorithms, typi-
cally, fail to provide precise predictions for these cases. More inter-
estingly, the proposed HDNN framework manages to provide accu-
rate RUL estimates values closely following their ground truth when
the units are close to failure.

3.4.2. The Results with Different Time Window Size

Table 2 shows the results obtained from the proposed HDNN frame-
work using 30 time window size for FD001 to FD004. Both the
RMSE and the score values for FD002 and FD004 are substantially
better than the values reported in the literature. To further show the
efficiency of our proposed HDNN framework, we examine the ef-
fects of the window size on the results. As such, we used a smaller
window size of 15 specially for FD002 and FD004 datasets, which
have complex nature with more operating conditions in comparison
to FD001 and FD003. It is observed that the results obtained from
smaller time window size were again outstanding, i.e., for FD002
the HDNN achieves score of 1966.415 and RMSE of 17.411, which
are considered exceptional. Similarly, for FD004 the score value
obtained from a smaller window size is equal to 2549.64 with the
RMSE value of 20.275. Comparison results with over 5 recent and
state-of-the-art algorithms are presented next.
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(a)

(b)

Fig. 2. The prediction for last recorded data point of different test-
ing engine unites. (a) Prediction for the 256 testing engine unites in
FD002. (b) Prediction for the 248 testing engine unites in FD004.

Table 3. Performance Comparison of 5 Methods with the proposed
method (HDNN) based on C-MAPSS datasets.

TW=30 HDNN DCNNRulclipper MODBNE FADCNN DLSTM
[35] [36] [37] [38] [39]

FD001 Score 245 273.7 216 334.23 1286.7 338
RMSE 13.017 12.61 13.27 15.04 18.45 16.14

FD002 Score 1282.42 10412 2796 5585.34 13570 4450
RMSE 15.24 22.36 22.89 25.05 30.29 24.49

FD003 Score 287.72 284.1 317 421.91 1596.2 852
RMSE 12.22 12.64 16 12.51 19.82 16.18

FD004 Score 1527.42 12466 3132 6557.62 7886.4 5550
RMSE 18.156 23.31 24.33 28.66 29.16 28.17

3.4.3. Comparison with Existing Methods

To evaluate and exactly point the placement of the reported results
compared to the existing literature we present comprehensive com-
parisons with existing state-of-the art RUL estimation solutions that
used the C-MAPSS datasets. Table 3 illustrates the results reported
by the most successful approaches for RUL prediction in the lit-
erature and are compared with the proposed HDNN framework.
Amongst these works, it is worth mentioning that our proposed
HDNN is the first hybrid deep neural network model for RUL es-
timation, that integrates two deep learning models to achieve this
task. It can be clearly seen from Table 3 that the proposed HDNN
model conducted almost the best performance and achieved the best
outcomes among the existing approaches. The exceptional improve-
ment in the outcomes distinguishes our model as it is the pioneer
that achieved such outcomes, specifically for FD002 and FD004.
The achieved improvements in the outcomes, as compared with the
best results available in the literature (DCNN) [35], exceeds 20% in

(a)

(b)

Fig. 3. Different examples of life time RUL prediction for a sample
engine unit of each dataset. (a) The testing engine Unit 70 in FD002.
(b) The testing engine Unit 8 in FD004.

terms of the RMSE value, and 80% in terms of the score value for
FD002, while 13% improvement is achieved in terms of the RMSE
value, and 80% in terms of the score value for FD004. In sum, the
proposed HDNN framework is capable of achieving exceptional
and unprecedented outcomes as shown in Table 2. Aside from the
great results achieved for the FD002 and FD004, the results accom-
plished from utilizing the FD001 and FD003 are also outstanding
and are better than most of the existing approaches except the DCNN
method, where slightly outperforms the HDNN, i.e., about 3% in
terms of the RMSE value for FD001, and 1% in terms of the score
value for FD003. We would like to point out that the HDNN results
are still better about 11% in terms of the score value for FD001, and
3% in terms of the RMSE for FD003.

4. CONCLUSION

In this paper, we have proposed and demonstrated a new deep learn-
ing approach referred to as Hybrid Deep Neural Network Model
(HDNN) for RUL estimation from multi-variate sensor signals. The
proposed HDNN framework is a hybrid architecture that integrates
a deep LSTM and a deep CNN coupled via fusion and fully con-
nected layers, to achieve an exceptional outcomes. The proposed
method has been tested on the NASA’s C-MAPSS dataset that simu-
lates the degrading health of a commercial aero engine. Comparisons
with several state-of-the-art methodologies have been conducted and
the results demonstrate the outstanding performance of the proposed
HDNN, specifically on complex datasets consisting of several oper-
ating conditions and fault modes.
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