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ABSTRACT

Capsule Networks (CapsNets) are recently introduced to
overcome some of the shortcomings of traditional Convolu-
tional Neural Networks (CNNs). CapsNets replace neurons
in CNNs with vectors to retain spatial relationships among
the features. In this paper, we propose a CapsNet architec-
ture that employs individual video frames for human action
recognition without explicitly extracting motion information.
We also propose weight pooling to reduce the computational
complexity and improve the classification accuracy by appro-
priately removing some of the extracted features. We show
how the capsules of the proposed architecture can encode
temporal information by using the spatial features extracted
from several video frames. Compared with a traditional CNN
of the same complexity, the proposed CapsNet improves ac-
tion recognition performance by 12.11% and 22.29% on the
KTH and UCF-sports datasets, respectively.

Index Terms— CapsNet, Human Action Recognition,
CNN, routing-by-agreement

1. INTRODUCTION

Convolutional Neural Networks (CNNs) have been shown
to attain outstanding results for human action recognition
(HAR) [1] by employing either 2D/3D convolutional kernels
[2], [3], or multi-stream approaches that learn features from
the spatial (frames) and temporal dimensions (optical flow)
of the video data [4] [5]. Unlike local feature descriptors [6]
[7], which rely on hand-crafted features, CNNs learn features
automatically and use translated replicas of these learned fea-
tures to translate knowledge visual data. This has been shown
to be very efficient in visual data interpretation.

Despite their outstanding performance, CNNs do not en-
code the spatial relationship among the learned features. The
multiple pooling layers commonly found in CNNs force the
network to ignore valuable information about the precise lo-
cation and pose of objects, thus discarding any correlation
among the learned features. This is a significant drawback
for segmentation and object detection tasks.

Capsule Networks (CapsNets) have been recently intro-
duced [8] to overcome some of the weaknesses of CNNs. A

CapsNet is a network that aims to perform inverse graphics,
i.e., finding the constituent objects displayed on the visual
data and their instantiation parameters. CapsNets are equiv-
ariant as they preserve detailed information about an object’s
location and pose throughout the network. This helps the net-
work to learn all the part-whole relationships, determine the
precise location of the extracted features, and build a hierar-
chical representation of objects composed of a hierarchy of
parts [9].

Based on the promising results that CapsNets have at-
tained for image classification [8] [10], we propose a 2D ar-
chitecture based on CapsNet for HAR. Our architecture uses
capsules to learn the location and pose of important objects
depicted in the input video frames to classify actions without
the need to explicitly extract motion information from the data
(i.e., optical flow). We also introduce a weight pooling algo-
rithm to reduce the number of predictions to be made by the
capsules and improve the classification accuracy. Compared
to a CNN of similar complexity and architecture, our Cap-
sNet achieves more accurate recognition results on the KTH
and UCF-Sports datasets with improvements of 12.11% and
22.29%, respectively.

The rest of the paper is organised as follows. Section 2
briefly describes the related work on CapsNets and HAR us-
ing Deep Neural Networks (DNNs). Our proposed architec-
ture is described in Section 3. Section 4 presents and dis-
cusses the performance. Finally, Section 5 concludes this
work.

2. RELATED WORK

CapNets: These networks comprise several capsules. A cap-
sule is any function that aims to predict the presence and
instantiation parameters of a specific object at a particular
location. Capsules output activation vectors, whose length,
l ∈ [0, 1], represents the probability that the object of interest
is present in the location associated with the capsule. Alter-
natively, capsules can output matrices [10], which can better
deal with different viewpoints of the visual data. Capsules can
be easily created by re-arranging feature maps extracted by
traditional convolutional (Conv) layers into vectors (or matri-
ces) representing features extracted from a specific location.
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CapsNets can handle objects comprising a hierarchy of parts
by employing routing-by-agreement. To this end, every cap-
sule in layer L predicts the output of every capsule in layer
L + 1, and only when the prediction of capsules in layer L
agrees, will their outputs be routed to the corresponding cap-
sule in layer L + 1 to accurately determine the instantiation
parameters of objects [8].

HAR with CapsNets: Recently, CapsNets have been de-
signed for image classification [11] [12] and object segmen-
tation [13] tasks. To the best of our knowledge, CapsNets
have not been previously used exclusively for HAR. Cap-
sNets have been used, however, for human action detection,
where HAR is performed as an additional task [14]. That par-
ticular work uses 3D convolutional layers to extract the fea-
tures maps needed to create the capsules, which drastically
increases the number of capsules and thus, the computational
cost of routing. This is partially addressed by employing cap-
sule pooling.

In a more general framework, DNNs have been success-
fully used for HAR [15], where 2D convolutions are key com-
ponents to classify the action depicted in each frame [2]. The
work in [16, 17] uses region-based approaches to detect the
action across multiple frames. The extracted features are then
merged to obtain spatial-temporal information. The work in
[18] proposes a two-stream network, one stream takes video
frames to analyze the spatial dimension and the other stream
takes the optical flow of two consecutive frames to analyze the
temporal dimension. Despite capturing the temporal dimen-
sion, the optical flow has to be computed beforehand, which
may be computationally expensive. The work in [19, 20]
uses 3D CNNs to extract both spatial and temporal features
from the video frames and then classify actions accordingly.
To benefit from the pre-trained weights of ImageNet in 3D
CNNs, [1] proposes the two-stream I3D, which inflates the
2D convolution to 3D.

Fig. 1: Proposed CapsNet architecture.

3. PROPOSED CAPSNET FOR HAR

The proposed CapsNet architecture for HAR is depicted in
Fig. 1. The input to the network are gray-level video frames.
Three 2D ReLU Conv layers with a kernel size of {3× 3, 6×
6, 8×8} and a stride of {1, 2, 2}, respectively, first extract 128
feature maps, each. To reduce the computational costs of rout-
ing, the architecture employs a novel weight pooling approach
on the feature maps generated by Conv3. It then employs a
primary capsule layer composed of capsules created from the
pooled feature maps as 8-dimensional vectors. These primary

capsules are fully connected to the ActionCaps, a collection
of N capsules, where N is the number of action classes. Each
ActionCap is a 16-dimensional vector that interacts with the
primary capsules via routing-by-agreement [8].

To reduce overfitting, the architecture uses dropout [21]
and batch normalization [22]. Dropout is used after each
Conv layer with a 75% drop rate and batch normalisation is
used after the input, before each dropout layer, and before the
primary capsule layer. These techniques help the network to
better generalise and classify more accurately. The network
uses cross entropy as the loss function for classification:

H(p, q) = −
∑
x

p(x) log(q(x)), (1)

where p is the true class of the input frame x and q is the
predicted value. The ActionCap with the largest magnitude
corresponds to the detected class.

It is important to mention that capsules are originally
designed to classify images, using e.g. the MNIST [23]
or the smallNORB datasets [10], which requires extracting
less complex features compared to the case of HAR. Video
frames depicting human actions tend to be more challenging
with complex backgrounds and illumination changes. HAR
then requires extracting more complex features. To tackle
this challenge without drastically increasing the computa-
tional complexity, our CapsNet employs three Conv layers to
extract more complex features with fewer feature maps (128
each) compared to CapsNets used for image classification
[8].

Weight pooling: To reduce the high dimensionality of
the feature maps produced by Conv layers, large stride val-
ues and pooling layers are commonly used. On the one hand,
large stride values may prevent the network from extracting
all the important features. On the other hand, employing sev-
eral pooling layers may result in losing important information
about the precise location of objects.

In this work, instead of increasing the stride value of the
Conv layers or adding several pooling layers, we propose
weight pooling, which is inspired by stochastic pooling [24].
Differently from max pooling, which outputs the largest value
within a window of values, our weight pooling computes
weighted contributions for each value within the window to
produce the output value. This is described in Algorithm 1.

Our CapsNet architecture uses a single weight pooling
layer with a 2 × 2 window size and a stride of 2. This guar-
antees that the pooling operation is only applied once to each
2 × 2 region. After weight pooling, each of the 128 features
maps produced by Conv3 has a dimension of 5 × 5, which
results in 400 primary capsules after re-arranging the pooled
feature maps into 8-dimensional vectors.

4. EXPERIMENTS AND RESULTS

We measure the performance of our CapsNet architecture for
HAR on the KTH and UCF-sports datasets. The KTH dataset
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Algorithm 1: Weight pooling algorithm
Input: feature map, F
Output: pooled feature map, P
for every window m×m in F
do

M ← m×m area to be pooled;
avg ← average of M ;
S ← avg ×M ;
Ŝ ← normalise S;
P ← P ∪ sum of values of (M × Ŝ);

end for
return P

comprises videos with simple actions captured in a controlled
environment. The UCF-sports dataset, however, comprises
realistic videos with very challenging environment condi-
tions, including complex backgrounds with camera motion
and illumination changes. All frames are converted to grey
scale and re-sized to 60× 60.

For the KTH dataset, we use the same training and testing
split used by [25]. For the UCF-sports dataset, we use the
Leave-One-Out (LOO) scheme as in [26] to split the data into
training and testing.

Fig. 2: Baseline Capsule Network.

We evaluate four distinct approaches: 1) a baseline CNN;
2) a baseline CapsNet; (see Fig. 2) 3) our proposed CapsNet
with no pooling; 4) our proposed CapsNet with max pool-
ing; and 5) our proposed CapsNet with weight pooling. The
baseline CNN replaces the last two layers (primary capsules
and ActionCaps) of the proposed CapsNet in Fig. 1 by two
fully connected (FC) layers (see Fig. 3). The last fully con-
nected layer is connected with an N class softmax layer. Note
that the baseline CNN extracts the same amount of features
as compared to our proposed CapsNet. Therefore, evaluat-
ing the performance of this network allows determining any
improvements introduced by the capsules.

Table 1 tabulates average Correct Classification Rates
(CCR) over the splits. These results show that the baseline
CNN does not perform very well. State-of-the-art CNNs are
usually very deep networks that extract a vast amount of fea-
tures. Therefore, it is expected that this baseline CNN, which
has only three Conv layers, performs poorly.

Our proposed CapsNet with weight pooling outperforms
the baseline CNN by 12.11% and 22.29% on the KTH and
UCF-sports datasets, respectively. This confirms the power

Fig. 3: Baseline CNN.

Table 1: Frame-level CCR (%) and # of parameters (millions) of
various networks on the KTH and UCF-sports datasets

Network # of parameters KTH UCF
Baseline CNN 3.3 M 61.41 68.18
Baseline CapsNet ∼21.4 - 31.4 M 64.34 84.91
Proposed CapsNet
(no pooling) ∼2.8 - 3.8 M 68.25 81.42

Proposed CapsNet
(max pooling) ∼1.9 - 2.2 M 71.71 89.61

Proposed CapsNet
(weight pooling) ∼1.9 - 2.2 M 73.52 90.47

of capsules and routing-by-agreement to classify actions from
single video frames compared to using FC layers.

Our proposed CapsNet with weight pooling also outper-
forms the baseline CapsNet. We find that extracting more
feature maps tend to confuse the network, as more capsules
tend to be activated in the background and not in those re-
gions depicting the action. Therefore, by reducing the number
of features maps and pooling the last set of feature maps, our
CapsNet with weight pooling ensures that the most significant
features are extracted, thus reducing the chance of confus-
ing. Reducing the number of features maps also reduces the
number of training parameters, which helps to reduce training
times. The results in Table 1 suggests that the extra features
extracted by the baseline CapsNet make the training process
computationally expensive (see number of training parame-
ters).

The results in Table 1 also confirm the advantage of using
our weight pooling. Our CapsNet with weight pooling out-
performs the cases of using no pooling or max pooling. Let
us recall that pooling plays an important role in reducing the
dimensionality of the extracted feature maps, which help to
reduce computational complexity. Unfortunately, this reduc-
tion is achieved at the expense of discarding possibly impor-
tant features. Although our weight pooling discards features,
it does this in an appropriate manner by accounting for the
values within the windows to be pooled. This pooling helps to
enhance performance by reducing noisy features since it com-
putes the contribution of each value within the pooled window
to the output average value.

Discussions: Although our proposed CapsNets outper-
forms the baseline CNN on both the KTH and UCF-sports
datasets, it is still far from the results achieved by some of the
state-of-art CNNs, which are usually DNNs with several pool-
ing layers and very complex architectures. It is important to
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Fig. 4: Confusion matrices of the proposed CapsNet with weight
pooling on the KTH (top) and UCF-sports (11 actions - bottom)
datasets.

note, however, that our CapsNet is a very simple architecture
with only three Conv layers. The CCR improvements tabu-
lated in Table 1 indeed give a notion of the power of capsules
and routing-by-agreement for HAR even with a very simple
architecture.

Fig. 4 shows the confusion matrices of our CapsNet with
weight pooling on the KTH and UCF-sports (for 11 actions)
datasets. These matrices show that the majority of the ac-
tions are classified with high accuracy. It is important to note
that the complex and nosy backgrounds of the frames of these
datasets may affect the results in a positive and negative man-
ner. On the one hand, the background can help to classify a
frame based on a particular background entity. For example,
playing basketball in the UCF-sports dataset can be correctly
classified not only by the actual human action but also by the
basketball ring, the backboard, and the court. The hierarchi-
cal composition and location in the scene of these background
entities are indeed learned by the capsules. On the other hand,
strong noise in the background can activate some of the cap-
sules forcing them to ignore regions where the actual human
action is depicted.

To better understand the instantiation parameters learned

Fig. 5: Manipulation of ActionCaps for the KTH dataset. Each row
represents 5 frames reconstructed after modifying one of the 16 di-
mensions of the output vector by +/− 0.05.

by the capsules, we graphically depict what the ActionCaps
encode for the KTH dataset in terms of the space of varia-
tions in the way an action is instantiated. To this end, we
pass the encoding of only one ActionCap to a reconstruction
network by zeroing out other classes [8]. We use our Cap-
sNet in Fig. 1 with five Conv layers without pooling to ex-
tract features, and six deconvolutional layers for reconstruc-
tion. Fig. 5 shows the reconstructed frames when one of the
16 dimensions of the ActionCap is tweaked by +/ − 0.05.
It can be seen that the ActionCaps can indeed encode some
of the temporal information of the class by using just video
frames. For example, by encoding the multiple positions of
the hands, the vertical/horizontal hand movement is encoded
by one of the dimensions of the ActionCaps. Similarly, by
encoding the multiple actor’s positions in the frame, the ac-
tion of running/walking is encoded by one of these dimen-
sions. The ActionCaps can also encode different instantiation
parameters such as the actor’s height, background brightness
and actor’s shadow.

5. CONCLUSIONS

In this paper, we investigated the power of CapsNets for HAR
by proposing a simple architecture that can accurately clas-
sify actions from video sequences without explicitly extract-
ing temporal information. We also introduced weight pooling
to improve the classification accuracy compared to no pooling
and max pooling. Our proposed CapsNet outperforms a tradi-
tional CNN of similar complexity by 12.11% and 22.29% on
the KTH and UCF-sports datasets, respectively, when both
networks extract the same features. This confirms the great
potential of capsules for HAR. Finally, we showed the abil-
ity of capsules to encode the temporal information from the
information extracted from individual video frames by encod-
ing the multiple positions of important objects across a num-
ber of frames.
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