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ABSTRACT

A considerable challenge in applying deep learning to audio classi-
fication is the scarcity of labeled data. An increasingly popular solu-
tion is to learn deep audio embeddings from large audio collections
and use them to train shallow classifiers using small labeled datasets.
Look, Listen, and Learn (L3-Net) is an embedding trained through
self-supervised learning of audio-visual correspondence in videos as
opposed to other embeddings requiring labeled data. This frame-
work has the potential to produce powerful out-of-the-box embed-
dings for downstream audio classification tasks, but has a number of
unexplained design choices that may impact the embeddings’ behav-
ior. In this paper we investigate how L3-Net design choices impact
the performance of downstream audio classifiers trained with these
embeddings. We show that audio-informed choices of input repre-
sentation are important, and that using sufficient data for training the
embedding is key. Surprisingly, we find that matching the content
for training the embedding to the downstream task is not beneficial.
Finally, we show that our best variant of the L3-Net embedding out-
performs both the VGGish and SoundNet embeddings, while having
fewer parameters and being trained on less data. Our implementa-
tion of the L3-Net embedding model as well as pre-trained models
are made freely available online.

Index Terms— Audio classification, machine listening, deep
audio embeddings, deep learning, transfer learning.

1. INTRODUCTION

Machine listening is an active area of research concerned with the
development of computational methods to derive meaning from
sound, in which the use of deep learning has seen growing popular-
ity and success [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. However,
obtaining sufficient labeled data is difficult and costly for audio-
related tasks, where annotation often requires listening to entire
recordings [14, 15, 16, 17]. As a result, most existing machine lis-
tening datasets are relatively small and narrowly focused [1, 13, 18],
and only recently has the community seen a large-scale dataset with
the introduction of AudioSet [7]. While a significant improvement
on prior efforts, noisy and incomplete labels, as well as vocabulary
mismatches, means that there is still a range of machine listen-
ing problems for which AudioSet remains insufficient to support
end-to-end learning.
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Recently the community has turned to transfer learning [19] as a
solution to the issue of data scarcity. In this family of techniques, an
embedding model is trained to solve a task for which a large amount
of data is available and then used to generate input features to train
a model on a target task for which limited data are available. There
are multiple examples of deep embedding solutions in the literature.
VGGish [6, 9, 10, 20] is an audio embedding produced by train-
ing a modified VGGNet model [21] to predict video tags from the
Youtube-8M dataset [22]. SoundNet [3, 11, 23, 24, 25, 26] generates
embeddings by training a deep audio classifier to predict the output
of a deep image classifier, pre-trained on standard image recognition
datasets such as ImageNet [27]. More recent approaches success-
fully leverage triplet learning [28] under contextual constraints, such
as the temporal proximity of audio samples in video streams [12].

A notable approach, known as Look, Listen, and Learn (L3-
Net), uses a self-supervised learning method to train a model to de-
tect if a video frame corresponds to an audio frame [4, 5]. The ap-
proach stands out in several respects. First, it does not require any
annotated data. Second, it produces powerful embeddings leading to
state-of-the-art performance in sound classification, outperforming
SoundNet and other non-embedding approaches [4]. Third, this re-
markable performance is obtained while utilizing a relatively simple
convolutional architecture. Given the above, the L3-Net paradigm
has the potential to become a go-to solution for a wide range of ma-
chine listening tasks for which labeled data is scarce. However, a
number of important design choices are only briefly discussed and
their effect is not fully characterized, a problem compounded by the
fact that there is no open L3-Net implementation currently available.
These choices may have a non-negligible effect on the performance
and computational cost of the model.

In this paper we seek to address this gap by systematically ex-
ploring important implementation choices of theL3-Net embedding,
in the context of sound event classification. We address the fol-
lowing questions: (1) is it beneficial to use an audio-informed in-
put representation? (2) is it important that the training data for the
embedding match the downstream classification task? and (3) how
much training data is sufficient for training the embedding? In ad-
dition, we compare L3-Net against other popular embeddings, VG-
Gish and SoundNet, on three well-known datasets; release an open-
source implementation of the approach and its variants; and provide
pre-trained embeddings for community use.

2. LOOK, LISTEN AND LEARN (L3-NET)

The L3-Net approach [4] proposes a means of learning embeddings
via the auxiliary task of audio-visual correspondence (AVC) which
aims to determine whether a video image frame and a 1 s audio seg-
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Audio-Visual Correspondence
‣ Data -  AudioSet [4]: ~2 million YouTube video segments (up to 10 seconds)

• Use subset of classes expected to have high AVC [2]
• Challenge: dealing with scale of data w.r.t computational resources
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‣Classifier model

‣ Apply similar correspondence task idea to predict the location, time of the day of 
recorded audio from the SONYC data

• Urban sound sources tend to exhibit temporal and geospatial patterns
‣ Compress audio embedding model and classifier model to run on sensors

[1] Relja Arandjelovic and Andrew Zisserman, Look, listen and learn, 2017 
[2] Relja Arandjelovic and Andrew Zisserman, Objects that sound, 2017 
[3] Yusuf Aytar, Carl Vondrick, and Antonio Torralba, Soundnet: Learning sound 
representations from unlabeled video, 2016 
[4] Jort F. Gemmeke, Daniel P. W. Ellis, et al., Audio set: An ontology and human-
labeled dataset for audio events, 2017 
[5] Will Kay, Joao Carreira, et al., The kinetics human action video dataset, 2017 
[6] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello, A dataset and 
taxonomy for urban sound research, 2014
‣ GitHub: https://github.com/marl/l3embedding

‣ Learn good feature representations (AKA embeddings) using a large audio dataset 
and train an urban sound classifier with a much smaller set of annotated data

• Transfer learning to exploit correspondence between audio and video
‣ Audio-Video Correspondence [1]: Does an audio segment correspond to a 
video frame? (i.e. overlap in time)

• DNN classifier to classify if an audio snippet corresponds to a video frame
• Use the trained audio module as feature extractor

‣ Urban sound classification
‣ Classification with supervised deep learning requires significant annotated data
‣ Annotating audio data is tedious and time-consuming

2. Solution: unsupervised transfer learning

Learning deep audio embeddings using 
unsupervised audio-visual correspondence
Ho-Hsiang Wu1, Jason Cramer,1 Justin Salamon1,2, and Juan Pablo Bello1
1Music and Audio Research Laboratory, New York University
2Center for Urban Science and Progress, New York University

1. Problem

Learning embeddings
‣ Establish baseline: [1] achieved 80.8% AVC accuracy 
 
 
 
 
 
 
 
 
 
 
 
 
 

‣ Choose model with best AVC test accuracy that has well-behaved embeddings
Training urban sound classifier  
 
 
 
 
 
 
 
 

‣ Choose model with best overall performance 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3. Methods

4. Experimental design

6. References

5. Downstream tasks
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Fig. 1. High-level architecture of L3-Net.

ment come from the same video and overlap in time. The L3-Net
architecture as shown in Figure 1 has three distinct parts: the vision
and the audio subnetworks which extract visual and audio features
respectively, and the fusion layers which use both modalities to pre-
dict correspondence. Since both matched and mismatched image-
audio pairs can be generated automatically from the training data
(by taking the image and audio from the same video or from differ-
ent videos, respectively), no manual labeling is required in order to
train the model on this binary classification task.

The audio and vision subnetworks use four blocks of convolu-
tional and max-pooling layers, the outputs of which are flattened,
concatenated, and passed to the fully-connected fusion layers to pro-
duce the correspondence probability. The audio embedding is ob-
tained from the final output layer of the audio subnetwork, replacing
the layer’s non-linear activation with a max-pooling layer, the output
of which is flattened. The authors use a max-pooling size leading to
a final embedding dimensionality of 6144. For further details about
the L3-Net model architecture see [4].

While the embedding holds promise for downstream tasks, there
are design choices left unexplained that may impact the efficacy and
computational cost of the embedding. To better understand the be-
havior of the embedding, we explore three design choices that have
the potential to impact the performance of the embedding:

2.1. Input representation

The original L3-Net uses a linear-frequency log-magnitude spectro-
gram as the input to the audio subnetwork. However, it is more com-
mon in the audio machine learning literature to use Mel-frequency
log-magnitude spectrograms as input to convolutional networks.
Mel spectrograms are designed to capture perceptually relevant in-
formation more efficiently with less frequency bands compared to a
linear spectrogram [29]. Perhaps more importantly, when a sound
is pitch-shifted the pattern created by its harmonic partials change
when using a linear frequency scale, whereas with a (quasi) loga-
rithmic frequency scale such as the Mel scale, pitch shifts result in
a vertical translation of the same harmonic pattern, meaning that
convolutional filters should generalize better when using the latter.

2.2. Training data domain and match to downstream tasks

The authors of L3-Net use video content which they expect to have
a high degree of AVC to train the embedding model. Originally they
used the Flickr dataset [3], and subsequently a subset of the AudioSet
dataset [5]. The labels provided by AudioSet help to understand
the types of content in the videos and how they affect the behavior
of the embedding models. The authors use a subset of videos with
mostly people playing musical instruments while the downstream
tasks contain environmental sound sources. We examine whether
matching the audio domain used to train the embedding with the

domain of the downstream task improves performance. A priori we
expect matching the domains to have a positive effect.

2.3. Amount of training data

The authors train their embedding models with 60M samples, but do
not discuss how the amount of training data used affects the efficacy
of the embeddings. Since training these models can take signifi-
cant time and computational resources, it is beneficial to quantify
the trade-off between the amount of training data and performance
on the downstream classification tasks.

3. EXPERIMENTAL DESIGN

We employ a two-stage experimental design, first training a deep au-
dio embedding, and then evaluating the audio embedding as a feature
extractor in a downstream classification task.

3.1. Deep audio embedding model

We use AudioSet [7] to train the L3-Net audio embedding mod-
els. For each 10 s video in AudioSet, we download a 30-fps h.264-
encoded video and a 48 kHz FLAC audio file. We were able to
acquire ∼2M AudioSet videos. For the benefit of other researchers
we release the code we have developed for obtaining these videos1.

We train the embedding models using one of two subsets of Au-
dioSet, a music subset and an environmental subset. The music sub-
set replicates the one used in [5] which includes videos of people
playing musical instruments and using tools, chosen for the expected
high level of AVC. The environmental subset includes categories
such as human sounds, animal sounds, and other sounds found in
natural acoustic environments. We filter the videos using AudioSet
labels, obtaining 296K and 195K videos for the music and environ-
mental subsets respectively. We use 80% of the data for training,
10% for validation, and 10% for testing. For training, videos are
sampled using the pescador [30] framework. For each video,
we follow the sampling and augmentation scheme in [4], sampling
224x224 image patches and 1 s audio clips. We generate 60M train-
ing samples, 10M validation samples, and 10M testing samples.

We train the embedding models for 300 epochs, with 4096
batches of size 64 per epoch, corresponding to the model seeing
78.6M training samples. We use the Adam optimizer [31] to mini-
mize binary cross-entropy loss with L2 regularization, with an initial
learning rate and weight decay factor of 10−5, and Adam parameters
β1 = 0.9 and β2 = 0.999. We compute the spectrograms on the
GPU with TensorFlow [32] using kapre 2 [33]. We compute HTK
Mel-spectrograms [34] with either 128 or 256 Mel bands. The model
parameters are chosen from the epoch with the highest validation
accuracy. Each model took approximately ten days to train on four
parallel GPUs. To evaluate whether the embedding model has been
sufficiently trained, we look at the binary classification accuracy on
the AVC task for the test set of our two AudioSet subsets.

3.2. Downstream task: environmental sound classification

For the environmental sound classifier, we use a multi-layer percep-
tron (MLP) with two fully-connected hidden layers of size 512 and

1https://github.com/marl/audiosetdl
2The version of kapre used for our experiments contained a minor bug

affecting how spectrogram energy is normalized. We have verified that this
issue does not have any significant effect on our experimental results, and
have since fixed this issue in our released embeddings.
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128 respectively, and an output layer with a size corresponding to the
number of classes in the dataset being evaluated. The MLP is trained
to predict the class of a 1 s audio clip (a single embedding frame). At
test time we segment the audio clip into overlapping windows, com-
pute their embeddings, sum the class likelihoods output by the MLP
over all windows, and take the class with the highest total likelihood
as the clip prediction, as per [4]. We experiment with 3 well-known,
open datasets:
• UrbanSound8K [1] consists of 8732 audio clips of up to 4 s in

length, labeled with one of ten urban environmental sound event
categories such as air conditioner, dog bark, and jackhammer. The
dataset comes separated into ten equally-sized cross-validation
folds.

• ESC-50 [18] consists of 2000 5 s audio clips, labeled with one
of 50 environmental sound categories, such as glass breaking, car
horn, and wind. The dataset contains 40 examples per category
and comes separated into five equally-sized cross-validation folds.

• DCASE 2013 scene classification dataset (SCD) [13] consists of
200 30 s audio clips, labeled with one of ten auditory scenes such
as busy street, restaurant, and park. It contains 20 samples per cat-
egory and comes separated into equally-sized train and test sets.

We consider the following design choices:
• Input representation: We compare embeddings using a linear

spectrogram with 257 bins (Linear) used by the original L3-Net
and Mel spectrograms with either 128 (M128) or 256 (M256)
Mel bins spanning the entire audible frequency range.

• Training data domain and match to downstream tasks: We look at
embeddings trained on the environmental (Env) and music (Mu-
sic) subsets of AudioSet, representing matched and mismatched
conditions (with respect to the downstream tasks) respectively.

• Amount of training data: We evaluate different checkpoints of the
bestL3-Net embedding model variant, taken every 2.6M samples.

Finally, we also train classifiers using the SoundNet [3] and VG-
Gish [9] embeddings for comparison, using the pre-trained embed-
ding models provided by their respective authors.

3.3. Methodology for comparing embeddings

For all downstream datasets, we perform cross validation using the
predefined splits. We use 10% of the downstream training data for
validation, stratified with respect to classes. We compute embed-
dings from overlapping 1 s windows with a 0.1 s hop (except with
SoundNet, implemented with non-overlapping frames). Each design
choice is evaluated independently by averaging the results over all
other design variations not relevant to the comparison. We use the
Wilcoxon signed-rank test [35] with p < 0.05 to test for statistical
significance.

We use the validation set for early stopping with a patience of
20 epochs, training the MLP for up to 50 epochs. The embed-
dings are standardized prior to training. For each cross-validation
split, we tune the hyperparameters on the validation set over initial
learning rates of {10−5, 10−4, 10−3} and weight decay factors of
{10−5, 10−4, 10−3}. These models took up to 2 hours to train on a
single GPU.

4. RESULTS

4.1. Input representation

The results for different input representations are shown in Figure 2.
In all datasets, we see that Mel spectrograms outperform linear spec-
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Fig. 2. Classification accuracy vs. input representation.
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Fig. 3. Classification accuracy vs. training subset.

trograms, with the 256-bin variant performing the best; this advan-
tage is statistically significant on both UrbanSound8K and ESC-50,
confirming our hypothesis described in Section 2.1. M128 still per-
forms better than the Linear variant, suggesting that Mel bins indeed
capture relevant information in the audio signal more efficiently. In
the case of DCASE 2013 SCD, the dataset is so small that all em-
beddings perform comparably and obtain near-perfect accuracy.

4.2. Training data domain and match to downstream tasks

Before turning to the downstream task, we first evaluate the impact
of using matched/mismatched train/test domains on the performance
of L3-Net on the AVC task itself, presented in Table 1. As expected,
the model performs better on AVC when the train and test audio
domains are matched. Next, we examine how this influences perfor-
mance on the downstream classification task as shown in Figure 3.
Surprisingly, matching domains has no positive influence on perfor-
mance, and in the case of ESC-50 it slightly decreases performance.
This suggests that it might be more important to use audio content
that maximizes the discriminative power of the embedding, indepen-
dently of the downstream domain. In this case we expect videos of
people playing musical instruments to have a greater degree of AVC
than environmental videos on average, which is potentially a more
important factor influencing the efficacy of the resulting embedding.

4.3. Amount of training data

The results for UrbanSound8K and ESC-50 are shown in the top and
bottom plots of Figure 4. For the former, improvements in accu-
racy exhibit diminishing returns after training the embedding with
13M samples (at around 77%) while for the latter we see dimin-
ishing returns after 40M samples (at around 79%). For a resource
constrained training scenario, the results suggest that at least 40M
samples should be used to train the L3-Net embedding.
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Training Subset Music Test Acc. Env. Test Acc
Music 77.04% 64.82%

Env. 62.93% 78.08%

Table 1. Accuracy of M256 L3-Net models on the AVC test set.
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Fig. 4. Classification accuracy vs. number of training samples used
to train the embedding model.

4.4. Embedding type: L3-Net, SoundNet and VGGish

Finally, we compare our best overall L3-Net embedding model vari-
ant (M256 trained on Music) with SoundNet and VGGish, shown in
Figure 5. We see that L3-Net performs best on all three datasets,
resulting in a mean classification accuracy of 78.23%, 79.82% and
97% on UrbanSound8K, ESC-50 and DCASE 2013 SCD respec-
tively (the best performance on UrbanSound8K overall is obtained
with L3-M256/Env with an accuracy of 79.34%). The improvement
over the alternative embeddings is statistically significant with re-
spect to UrbanSound8K and ESC-50: L3-Net outperforms VGGish
on the two datasets by 4.85 and 6.28 points respectively and out-
performs SoundNet on the two datasets by 9.48 and 32.16 points
respectively. Furthermore, compared to VGGish, L3-Net has an or-
der of magnitude less parameters (4.7M vs 62M) and is trained on
significantly less data (296K vs 70M videos). Both advantages are
highly beneficial for scenarios with constrained resources.

The mean classification accuracy obtained by the best L3-Net
variant on each dataset is presented in Table 2 along with the accura-
cies obtained using SoundNet and VGGish embeddings. Apart from
the fact that the Mel-based L3-Net variants consistently outperform
SoundNet and VGGish, it is worth highlighting that by using Mel-
based L3-Net embeddings we are able to train a simple 2-layer MLP
that matches the state-of-the-art performance on UrbanSound8K [2],
arguably the most challenging of the three datasets.

5. CONCLUSION

In this paper we elucidate the relative importance and impact of dif-
ferent design and training choices on the efficacy of deep audio em-
beddings, in particular L3-Net. Our key findings are:

• Using sufficient training data has the largest impact on the efficacy
of the embedding for downstream tasks. For L3-Net, using less

Embedding Model UrbanSound8K Test Accuracy

L3-Net M256/Env 79.34%
VGGish 73.43%

SoundNet 68.80%

Embedding Model ESC50 Test Accuracy

L3-Net M256/Mus 79.82%
VGGish 73.54%

SoundNet 47.66%

Embedding Model DCASE 2013 SCD Test Accuracy

L3-Net M256/Mus 97%
VGGish 93%

SoundNet 76%

Table 2. Test classification accuracy of the best L3-Net embedding
compared to VGGish and SoundNet on each dataset.
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Fig. 5. Classification accuracy using different audio embeddings.

than 40M training samples results in a sub-optimal embedding,
after which we see improvements with diminishing returns. Since
L3-Net does not require any labeled data, all that is needed is a
large video dataset.

• Domain-informed design choices still matter. Using an input rep-
resentation better suited for audio convnets (Mel spectrograms)
outperforms a vanilla audio representation.

• Matching the audio content domain between the embedding and
downstream task is not necessarily helpful. Our results suggest it
might be more important to use content that is best suited to the
embedding training paradigm.

• L3-Net consistently outperforms VGGish and SoundNet on envi-
ronmental sound classification. In particular, the model has 10x
less parameters compared to VGGish and can be trained using
100x less data while not requiring labels, making it attractive both
for general purpose use and for deployment scenarios with con-
strained resources.

Pre-trained versions of the L3-Net variants studied in this work are
made freely available online3 for the community to experiment with.
For research reproduciblity, the code for running our experiments is
also available online4.

3https://github.com/marl/openl3
4https://github.com/marl/l3embedding

3855



6. REFERENCES

[1] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxon-
omy for urban sound research,” in 22nd ACM Int. Conf. on
Multimedia. ACM, 2014, pp. 1041–1044.

[2] J. Salamon and J. P. Bello, “Deep convolutional neural net-
works and data augmentation for environmental sound classi-
fication,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
279–283, 2017.

[3] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning
sound representations from unlabeled video,” in Advances in
Neural Information Processing Systems, 2016, pp. 892–900.
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