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ABSTRACT

Recent work has shown that exploiting relations between labels im-
proves the performance of multi-label classification. We propose a
novel framework based on generative adversarial networks (GANs)
to model label dependency. The discriminator learns to model label
dependency by discriminating real and generated label sets. To fool
the discriminator, the classifier, or generator, learns to generate la-
bel sets with dependencies close to real data. Extensive experiments
and comparisons on two large-scale image classification benchmark
datasets (MS-COCO and NUS-WIDE) show that the discriminator
improves generalization ability for different kinds of models.

Index Terms— Multi-label classification, Generative Adversar-
ial Network

1. INTRODUCTION

Multi-label classification is a fundamental but challenging problem
in machine learning with applications such as multi-object recogni-
tion [1, 2], image classification [3], text categorization [4], and music
categorization [5]. In contrast to single-label classification, multi-
label predictors must not only relate labels with the corresponding
instances, but also exploit dependencies between labels due to label
co-occurrences. Take for instance multi-label image categorization:
beach and sky usually appear together in the same image, whereas
airplane and dog do not often co-occur.

A simple approach to using deep networks – for example
CNNs – for multi-label classification is to recast the problem as
multiple disjoint binary classification by replacing cross-entropy
loss with logistic loss or ranking loss [6]. To model label depen-
dency, however, recent work has focused on capturing cross-label
correlation using probabilistic graphical networks [7, 8], depen-
dency networks [9], recurrent neural networks (RNNs) [10], and so
on.

In this work, we propose a new framework under which to train
a multi-label classifier. We use a generative adversarial network
(GAN) to model the label distribution for multi-label classification.
This framework is built upon a conditional GAN (cGAN). The clas-
sifier here plays the role of a conditional generator, whose input
is an instance, and which outputs a set of labels as with a typical
multi-label classifier. A discriminator is trained to model label de-
pendency: it takes an object and a set of labels as input, and outputs
a score. The set of labels comes either from the training data or from
the output of the classifier, that is, the generator. The discriminator
learns to discriminate the real and generated label sets. To tell the
real label from the generated ones, the discriminator must model the
correlation of the input instances and their corresponding label sets
as well as the label dependency of the label sets in the training data.

The classifier then learns to fool the discriminator by generating la-
bel sets with what seems to be the correct dependencies, given an
input instance by the discriminator. The classifier and discriminator
are learned iteratively as in a typical GAN.

As the proposed framework is general and independent of the
network architecture of the classifier, we believe the discriminator
can be easily appended to other models to help learn label depen-
dencies. Evaluation on two public multi-label image classification
datasets shows that the discriminator facilitates generalization abil-
ity among CNNs with different architectures. To the best of our
knowledge, this is the first attempt to utilize GANs for multi-label
classification.

2. RELATED WORK

Multi-label classification has been widely studied in image classifi-
cation. A straightforward way to deal with multi-label classification
is to decompose it into multiple binary classification tasks, such as
binary relevance [11] using neural networks. To further improve
performance, recent work has taken into account interdependency
between labels. Gong et al. [6] evaluate various objectives with a
CNN architecture, and find that weighted approximate ranking loss
works best with CNNs. To better model the structure of label cor-
relations, traditional graphical models have also been used for this
task [7, 8]; latent space methods [12, 13] have also been proposed.
Wang et al. [10] and Chen et al. [14] combine CNN and RNN to
jointly embed images and semantic structure of labels in the same
embedding space. Zhu et al. [15] further propose a spatial regular-
ization network to capture both spatial and semantic relations.

The work mentioned above mainly considers the global repre-
sentation of the whole image, ignoring the relationships between
semantic labels and local image regions, which is difficult to de-
cipher given complex backgrounds. To handle such cases, Wei et
al. [13] propose a Hypothesis-CNN-Pooling framework to aggre-
gate the label scores of each proposal using category-wise max-
pooling. Yang et al. [16] transform the multi-label recognition prob-
lem into a multi-class, multi-instance learning problem and make
use of label-view information of the proposals to enhance features.
Newer work [17, 18] uses long short term memory (LSTM) units to
iteratively discover a sequence of attentional and informative regions
and further predict labeling scores.

The proposed approach is independent of the above approaches.
It is possible to further improve the above approaches with a dis-
criminator.
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Fig. 1. Proposed framework for multi-label classification, shown in (a). Fig (b) illustrates three kinds of discriminator inputs. The upper one
is the positive example (real label set y, image x), a matched pair sampled from real data distribution. The others are negative examples.
The middle is the generated pair (generated label set ŷ, image x), where ŷ is sampled from the output of generator ỹ. The bottom is the
mismatched pair (random sampled label set y′, image x). The discriminator learns to assign low scores to the negative pairs, and high scores
to the positive pairs as genuine.

3. METHODOLOGY

The overview of the proposed framework is shown in Fig. 1(a). Here,
multi-label image classification is considered an instance of multi-
class classification. Let x denote an input image for which its cor-
responding ground-truth labels are y ∈ {0, 1}|S|, where |S| is the
number of labels (or classes), and y is a set of labels. The generator
and discriminator in Fig. 1 are trained iteratively. That is, we fix one
and update the other several times.

3.1. Classifier (Generator) and Discriminator

The generator G1 is a classifier with sigmoid activation functions
at the output layer. The classifier here can have a wide variety of
architectures, for example, VGG-16 [19], Inception v3 [20], Resnet-
101 [21], or Resnet-152 [21]. G takes the input image x and predicts
the probability of each label to generate a probability distribution ỹ.
During the training phase, the predicted label set ŷ is sampled from
ỹ by considering the sigmoid output as a probability. During testing,
labels whose sigmoid outputs are larger than 0.5 are in the output
label set.

The discriminator D receives a label set y (or ŷ) and an image
x, and produces a score, D(y, x) (or D(ŷ, x)), which represents the
measurement of how “real” the label distribution is and the degree
of match between the image and the label set. D contains a feature
extractor network fext which produces z = fext(x) as the feature
vector for image x. Then a feedforward network takes z and y (or
ŷ) as input and outputs a single value D(y, x) (or D(ŷ, x)). During
the testing phase, only the generator is used; the discriminator is left
unused.

3.2. Classifier Training

G is pretrained as a typical multi-class classifier by minimizing the
binary cross-entropy loss Llogistic using the ground truth labels y =
[y1, y2, ..., y|S|]

T and the predicted probability of each label ỹ =

1In contrast to the typical cGAN setting, the conditional generator here is
conditioned on the image, not the class information.

[ỹ1, ỹ2, ..., ỹ|S|]
T :

Llogistic = E(x,y)∼data [

|S|∑
i=1

yilog ỹi + (1− yi)log(1− ỹi)], (1)

where (x, y) is an 〈image, label set〉 pair sampled from training data,
and ỹ is the output label distribution of G given x sampled from the
training data. As all labels are considered independently in Llogistic ,
the classifier learned by minimizing Llogistic is not guaranteed to
model dependencies between labels.

During the iterative training, the loss function of generator G is

L′G = LG + αLlogistic , (2)

where α determines the scale of the logistic loss and

LG = −Ex∼data,ŷ∼G(x)[D(ŷ, x)], (3)

where x is an input image sampled from training data. ŷ is the output
label set of G sampled from ỹ. D(ŷ, x) is the score assigned by the
discriminator given an 〈image, label set〉 pair. With (3), the generator
learns not only to minimize the logistic loss Llogistic , but also to
produce a reasonable combination of labels to fool the discriminator
D by maximizing the value D(ŷ, x). Because D takes the whole
label set y or ŷ as input, it uses the dependency between the labels to
discriminate real and generated label sets. Therefore, the G learned
from D takes into account label dependency.

Equation (3) requires the composition of the generator and dis-
criminator to be fully differentiable. Here, since the label set ŷ is
a discrete multi-hot vector, we use the Gumbel-softmax trick for a
Bernoulli distribution of each label [22, 23], which we here term
Gumbel sigmoid, to reparameterize the sampling procedure to make
it differentiable.

3.3. Discriminator Training

To train the discriminator D, (real label set y, image x) sampled
from real data distribution serves as positive examples. For negative
examples, we not only provide D with the generated pairs, (gen-
erated label set, ŷ, image x), but also the mismatched pairs, (ran-
dom sampled y′, image x), where y′ is a label set randomly sampled
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from the training data which does not correspond to image x [24].
Fig. 1(b) illustrates these three kinds of discriminator inputs. Here,
we use a Wasserstein GAN with a gradient penalty (WGAN-gp).
The loss function of discriminator LD is

LD = −E(x,y)∼data [D(y, x)]

+
1

2
Ex∼data,ŷ∼G(x)[D(ŷ, x)] +

1

2
Ex∼data,y′∼data [D(y′, x)]

+ λLgp.

(4)

In the first term, an image x and its label set y is sampled from the
training dataset, from which D learns to assign large values to gen-
uine samples. In the second term, the image x and the label set ŷ
predicted by the generator is generated, for which D is expected to
assign a small value. To help the discriminator to learn how to dis-
criminate mismatched image/label pairs, we use negative sampling
as (the third term): we randomly select mismatched 〈image x, label
set y′〉 pairs from the training data, to which D also learns to assign
low scores. That is, the discriminator learns to assign low scores to
two kinds of errors: the generated label set from the classifier and re-
alistic label sets with the wrong images that mismatch the condition
information.

The last term Lgp is the gradient penalty [25]; λ determines the
gradient penalty scale.

Lgp = Ex∼data,ŷ∼G(x),y∗∼interp(ŷ,y∗)[(‖∇D(y∗, x)‖ − 1)2] (5)

We interpolate the real label y and the generated label ŷ with ran-
dom weights between 0 and 1 to generate y∗, and apply the gradient
penalty to y∗. This gradient penalty is essential to stabilize the train-
ing.

4. EXPERIMENT

We evaluated the proposed approach on the MS-COCO benchmark
with 80 labels, and NUS-WIDE with 81 labels. As performance
measures we used macro/micro precision, macro/micro recall, and
macro/micro F1-measure. Note that macro/micro P/R/F1 scores are
abbreviated as C/O-P/R/F1, respectively. Generally, C/O-F1 is more
important [26].

In the experiments, we compared the proposed approach with
WARP [6], CNN-RNN [18], order-free CNN-RNN with visual at-
tention (Att-RNN) [14], and RLSD [27], which also models label de-
pendency. To show that the proposed approach is general, we com-
pared four kinds of generator architectures: CNNs, VGG-16 [19],
Inception v3 [20], Resnet-101 [21], and Resnet-152 [21].

4.1. Implementation details

The generator was pretrained on ImageNet with 1000 categories and
fine-tuned on target datasets (MS-COCO with 80 labels and NUS-
WIDE with 81 labels). We removed the output layer of the pre-
trained generator as the feature extractor network fext in the dis-
criminator. Its parameters remained fixed during training. For the
discriminator, the image features z = fext(x) and label set were
both linearly projected onto 256-dimension vectors, and then simply
concatenated and fed into 8 fully connected layers of 512 dimensions
with leaky relu activation functions. It is common to update the gen-
erator and discriminator with different numbers of steps. According
to our experimental observation, as the pretrained generators were
strong enough, we trained the discriminators 3 times per generator

update. For each discriminator training iteration, we randomly sam-
pled 3 batches for 3 kinds of inputs: matched pairs, generated pairs,
and mismatched pairs, as indicated in Fig. 1(b); this is essential for
training stability.

We based the whole optimization process on the Adam optimizer
with a learning rate of 0.0001 for both the generator and the discrim-
inator. The logistic loss weight of the generator α and the gradient
penalty scale of the discriminator λ were both set to 10. In Gumbel
sigmoid, the inverse temperature was set to 0.9 without annealing.

We followed [28] for our data augmentation strategies. Specif-
ically, we first resized the image to 256 × 256, after which we ex-
tracted five patches (four corner patches and the center patch) with
a size from the set {256,224,192,168,128}. Finally, we resized the
patches to 224 × 224. For testing, we simply resized all images to
224× 224 and conducted single-crop evaluation.

4.2. Experimental results

4.2.1. Microsoft COCO

Microsoft COCO (MS-COCO) is a large-scale dataset for object de-
tection, segmentation, and image captioning. It has also been used
for multi-label classification. It comprises a training set of 82,081
images, and a validation set of 40,137 images from 80 classes. Since
the ground truth labels of the 2014 challenge are not available, we
followed [14] and [18] in utilizing the validation set to evaluate our
methods.

From Table 1, we see that the baselines of Inception v3, Resnet-
101, and Resnet-152 without the discriminator outperform other
methods in C-F1 and O-F1 due to the advanced deep neural net-
work structures. Moreover, all four models trained with WGAN-gp
achieve higher C/O-F1 scores than the baselines without discrim-
inator, which further suggests that modeling label correlation im-
proves multi-label classification. The performance gain is less
obvious when the baseline model is stronger. For example, there
is a 4.4%/2.7% performance gain in C/O-F1 for VGG-16 but only
0.6%/0% for Resnet-152. For deeper networks such as Resnet-101
and Resnet-152, they may implicitly learn label dependencies due
the huge number of hidden layers; this limits the usefulness of
WGAN-gp. We also note that models which use WGAN-gp achieve
higher recall but lower precision. We find that baseline models pre-
dict 2.09 labels per instance on average, whereas models which use
WGAN-gp predict 2.61 labels, which is about 25% higher than the
previous and results in higher F1 scores.

Methods C-P C-R C-F1 O-P O-R O-F1
WARP 59.3 52.5 55.7 59.8 61.4 60.7

CNN-RNN 66.0 55.6 60.4 69.2 66.4 67.8
Att-RNN 71.6 54.8 62.1 74.2 62.2 67.7

RLSD 67.6 57.2 62.0 70.1 63.4 66.5
VGG-16 74.2 44.8 56.0 77.6 52.5 62.6

+ WGAN-gp 62.6 58.3 60.4 67.5 63.3 65.3
Inception v3 76.4 52.8 62.4 80.0 58.8 67.8
+ WGAN-gp 70.5 58.2 63.8 73.2 63.8 68.2
Resnet-101 76.2 53.4 62.8 80.8 58.9 68.1

+ WGAN-gp 70.5 58.7 64.0 72.3 64.6 68.2
Resnet-152 76.6 53.9 63.3 80.6 59.6 68.6

+ WGAN-gp 71.4 57.9 63.9 73.6 64.2 68.6

Table 1. Multi-label classification results on MS-COCO with 80
labels. Results of WARP, CNN-RNN, and RLSD are reported with
the top 3 labels.
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This shows that with WGAN-gp, the classifier better models la-
bel dependencies and thus extracts more labels that are not detected
by the original classifier. Examples of multi-label classification re-
sults are shown in Fig. 2.

4.2.2. NUS-WIDE

NUS-WIDE is a web image dataset which contains 269,648 images
and associated tags from Flickr. The images are further manually
annotated into 81 concepts. Following the experimental settings of
WARP [6] and Att-RNN [14], we removed images without annota-
tions and used 150,000 images for training and 59,347 images for
testing. The results are reported in Table 2. MS-COCO and NUS-
WIDE show similar trends.

Methods C-P C-R C-F1 O-P O-R O-F1
WARP 31.7 35.6 33.5 48.6 60.5 53.9

CNN-RNN 40.5 30.4 34.7 49.9 61.7 55.2
Att-RNN 59.4 50.7 54.7 69.0 71.4 70.2

RLSD 44.4 49.6 46.9 54.4 67.6 60.3
VGG-16 53.3 24.9 33.9 73.9 59.6 66.0

+ WGAN-gp 51.6 34.3 41.2 68.8 67.3 68.1
Inception v3 67.9 44.1 53.5 74.7 64.8 70.3
+ WGAN-gp 62.4 50.5 55.8 71.4 70.9 71.2
Resnet-101 67.0 44.0 53.1 76.3 65.0 70.2

+ WGAN-gp 59.6 51.8 55.4 68.9 72.8 70.8
Resnet-152 69.1 41.8 52.1 75.9 65.1 70.1

+ WGAN-gp 65.2 46.2 54.1 71.3 70.8 71.1

Table 2. Multi-label classification results on NUS-WIDE with 81
labels. Results of WARP, CNN-RNN, and RLSD are reported with
the top 3 labels.

4.2.3. Ablation study

In this section, we show all the mechanisms described in Sect. 3.
Table 3 reports the macro/micro F1 scores of different type of mod-
els. In this experiment, we used Resnet-101 as the generator and
performed classification on MS-COCO.

Rows (a) and row (b) show the results of Resnet-101 with all
the mechanisms and the baseline model trained with logistic loss, as
reported in Table 1. The classifier models in rows (c), (d), and (e)
have the same network architecture as in rows (b), but we remove
some GAN training tricks. In rows (c) and (d), we do not perform
negative sampling. That is, the third term of LD in Eq. 4 is removed,
and the weight of the second term becomes 1. In row (d), we replace
the conditional discriminator with an unconditional one. Therefore,
the only discriminator input is y or ŷ. The discriminators here need
only distinguish between real and generated label sets. The scores
in row (c) and (d) are both less than the baseline. In row (e), as we
directly feed the generator continuous output distribution ỹ to the
discriminator, Gumbel sigmoid is not needed. However, since the
real data y is discrete, the generator must sharpen the distribution ỹ,
which reduces performance.

5. CONCLUSION

In this paper, we propose a novel framework for multi-class classi-
fication.2 Inspired by GAN, the discriminator learns to model la-

2This work was financially supported by the Ministry of Science and
Technology of Taiwan.

Methods C-F1 O-F1
(a): Resnet-101 62.8 68.1
(b): Resnet-101 + WGAN-gp 64.0 68.3
(c): (b) w/o negative sampling 62.2 67.5
(d): (b) w/o conditional discriminator 62.5 67.6
(e): (b) w/o Gumbel sigmoid 62.3 67.1

Table 3. Macro/micro F1 scores with/without specific modules. Re-
sults are evaluated on MS-COCO with the Resnet-101 generator.

(A) (B)

Ground truth: person, sports ball,
baseball bat, baseball glove

wine glass, cup, fork,
knife, pizza, dining table

Resnet-101 person, baseball bat fork, knife, pizza, dining table
Resnet-101 +
WGAN-gp

person, sports ball,
baseball bat, baseball glove

wine glass, cup, fork,
knife, pizza, dining table

(C) (D)
Ground truth: chair, couch, bed, book person, laptop
Resnet-101 couch, tv, book person,laptop

Resnet-101 +
WGAN-gp

chair, couch, tv,
laptop, book

laptop, mouse,
keyboard

Fig. 2. Multi-label classification results from MS-COCO. With
WGAN-gp, classifiers better predict smaller-sized image objects.
For example, (A): Resnet-101 + WGAN-gp correctly predicts base-
ball glove and sports ball based on observations of person and base-
ball bat. However, in (D), it incorrectly relates mouse and keyboard
to laptop.

bel dependency by discriminating real and generated label sets. To
fool the discriminator, the classifier learns to generate label sets with
dependencies close to real data. Extensive experiments and com-
parisons on two large-scale image classification benchmark datasets
show that with this discriminator, F1 scores are improved across dif-
ferent classifier models. In future work, because the proposed idea
is a general framework for multi-class classification, we will apply
the proposed approach on multi-class classification tasks other than
image classification.
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