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ABSTRACT
Although Deep Neural Networks could achieve state-of-the-
art performance while recongnizing images, they often suffer
a tremendous defeat from adversarial examples–inputs gen-
erated by utilizing imperceptible but intentional perturbations
to samples from the datasets. So far, very few methods have
provided a significant defense to adversarial examples. In this
paper, an effective framework based Generative Adversarial
Nets(GAN) is proposed to defense against the adversarial ex-
amples. The essense of the model is to eliminate the adver-
sarial perturbations being highly aligned with the weight vec-
tors of nueral models. Extensive experiments on benchmark
datasets MNIST, CIFAR10 and ImageNet indicate that our
framework is able to defense against adversarial examples ef-
fectively.

Index Terms— Adversarial examples, Adversarial per-
turbations elminination, Adversarial attack, Generative Ad-
versarial Nets, Deep neural networks

1. INTRODUCTION

Deep neural networks have recently achieved excellent per-
formance on a variety of visual and speech recognition tasks.
However, they have intrinsic blind spots that are easy to be at-
tacked using obscure manipulation of their inputs[1, 2]. When
the infinitesima perturbations being highly aligned with the
weight vectors, the neural networks’ linear behavior in high-
dimensional most likely accumulates one large change to the
output. Szegedy et al.[3] first noticed that imperceptible per-
turbation of samples can be misclassified by deep neural net-
works. Opposite to clean examples, they term this kind of
subtle perturbed samples ”adversarial examples”.

Adversarial examples pose potential security threats for
practical machine learning applications. Recent research[2]
shows that a large fraction of adversarial examples are classi-
fied incorrectly even when obtained from the cell-phone cam-
era. It is possible that adversarial images of traffic signs cause
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Fig. 1. A certain imperceptiable pertubations of images can
lead to incorrected detection. The proposed APE-G model
undermines the infinistesimal perturbation of the adversarial
examples before it be feed into the deep learning models.

the vision-based self-driving car to take disastrous actions.
Therefore, the research of resisting adversarial examples is
very significant and urgent.

Unfortunately, traditional strategies such as pretraining
and dropout are not conducive to improving the model’s ro-
bustness to adversarial examples. Carlini et al.[4] proved that
adversarial examples are significantly harder to detect and
reject. Adversarial training[1] and Defensive Distillation[5],
that back-feed adversarial examples to training, do provide
an additional regularization benefit of the resulting models,
but fail to reduce the model’s vulnerability to new adver-
sarial perturbations. Therefore, defense against adversarial
examples is still a huge challenge.

Since the high-dimensional linear nature of deep nueral
network can hardly be avoided in practical application, it be-
comes more difficult to defend against adversarial examples.
But the generalization of adversarial examples across differ-
ent models[1] provides new clues to defense against adver-
sarial attack. Compared with clean examples, adversarial ex-
amples contain infinitesimal perturbations that add up to one
large change to the output[1]. It is possible to defense against
adversarial examples if there is an algorithm that can dispel
or eliminate the infinitesimal perturbations of the samples.

In this paper, a novel framework based Generative Ad-
versarial Nets[6] is proposed to eliminate adversarial pertur-
bations of adversarial examples before being recognized by
the machine learning systems, as show in Figure 1. The gen-
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erative model learns a mapping from adversarial examples’
manifold to clean examples’, which eliminates the adversar-
ial perturbations being highly aligned with the weight vectors
of deep nueral models. To achieve this goal, several task spec-
ified loss functions is invented to make the adversarial exam-
ples being high consistent with the clear examples.

2. PROPOSED METHOD

Construction of adversarial example can be formulated as a
small enought perturbation ε of input X and Xε that satisfies

‖Xε −X‖ = ε (1)

but f(X) 6= f(Xε), where X is the clean example, Xε is the
adversarial example and f is the classifer mapping from input
image to a discrete label set. The fundamental idea of defend-
ing against adversarial examples is to eliminate or damage the
trivial perturbations ε of the inputXε before being recognized
by the target model.

The minimax game of GAN has a global optimum pg =
pdata, where pg is the generative distribution and pdata is the
samples from the data generating distribution. Thus, we can
formulate the elimination of adversarial perturbation ε as

p‖Xε−ε‖ = p‖X‖ (2)

The procedure of converging to a good estimator of p‖Xε−ε‖
is to elimimate the adversarial perturbations ε.

Based on the above analysis, a novel framework based
GAN to eliminate the adversarial perturbations is proposed,
which is termed APE-GAN(adversarial perturbation elimina-
tion with GAN), as shown in Figure 2. The APE-GAN net-
work is trained in an adversarial setting. While the generator
APE-G is trained to alter the perturbation with tiny changes
to the input examples, the discriminator APE-D is optimized
to seperate the clean examples and reconstructed examples
without adversarial perturbations obtained from APE-G. To
achieve this, a task specified fusion loss function is invented
to make the adversarial examples highly consistent with orig-
inal clean image manifold.

2.1. Architecture

The ultimate goal of APE-GAN is to train a generating func-
tion G that gets rid of the imperceptiable but intentional per-
turbations of the adversarial input image Xε. To achieve this
goal, a generator network parametrized by θG is trained. Here
θG denotes the weights and baises of a generate network and
is obtained by optimizing an adversarial perturbation elimi-
nation specified loss function lape. With training images Xk

ε

obtained by applying FGSM and corresponding original clean
image Xk, k = 1, ..., N , we solve:

θ̂G = argmin
θG

1

N

N∑
k=1

lape(GθG(X
k
ε ), X

k) (3)

Fig. 2. We propose an adversarial perturbations elimination
framework named APE-GAN to eliminate the perturbation of
the adversarial examples before feeding them into the target
model to defense against adversarial attack.

A discriminator network DθD along with GθG is defined
to solve the adversarial zero sum problem:

min
θG

max
θD

EX∼pdata(X) logDθD (X)−

EXε∼pG(Xε) log(DθD (GθG(Xε)))
(4)

The general idea behind this formulation is that it al-
lows one to train a generative model APE-G with the goal
of deceiting a differentiable discriminator APE-D, which
is trained to tell apart adversarial perturbations eliminated
images X̂=APE-G(Xε) from original clean images. Conse-
quently, the generator can be trained to produce reconstructed
images that are not only highly similar to original clean im-
ages but also rid of adversarial perturbations, and thus APE-D
is unable to distinguish them.

The general architecture of our generator network APE-
G is illustrated in Figure 2. Some convolutional layers with
stride = 2 are leveraged to get feature maps with lower resolu-
tion and followed by some deconvolutional layers with stride
= 2 to recover the original resolution.

To discriminate original clean images X from recon-
structed images X̂ , we train a discriminator network APE-
D. The general architecture is illustrated in Figure 2. The
discriminator network is trained to solve the maximization
problem in Equation 4. It also contains some convolutional
layers with stride = 2 to get some high-level feature maps,
two dense layers and a final sigmoid activation function to
obtain a probability for samples classification.

2.2. Loss Function

The definition of our adversarial elimination specified loss
function lape is critical for the performance of our generator
network to produce images without adversarial perturbations.
We define lape as the weighted sum of several loss functions
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as:
lape = ξ1lmse + ξ2ladv + ξ3lsc (5)

where consist of pixel-wise MSE(mean square error) loss, ad-
versarial loass and spatially coherent loss.

Adversarial perturbations can be viewed as a special noise
constructed delicately. The most widely used loss for image
denoise or super resolution will be able to achieve satisfactory
results for adversarial elimination. Inspired by image super
resolution method[7], the pixel-wise MSE loss is defined as:

lmse =
1

WH

W∑
w=1

H∑
h=1

(Xw,h −GθG(Xε)w,h) (6)

where w and h are the coordinates of the image.
To encourage our network to produce images residing on

the manifold of original clean images, the generative loss of
the GAN is also employed. The adversarial loss ladv is calcu-
lated based on the probabilities of the discriminator over all
adversarial images as:

ladv =

N∑
n=1

[1− logDθD (GθG(Xε))] (7)

In addition to the adversarial loss, we also add a spatially
coherent loss based on the total variation to lape, which is
calculated as:

lsc =
1

WH

W∑
w=1

H∑
h=1

‖OGθG(Xε)w,h‖ (8)

This formulation encourages one to generate an adversarial
slack image with infinitesimal and imperceptible changes to a
adversarial sample.

To focus the learning effort of discriminator on the aspects
that are most relevant to adversarial examples, we calculate
the loss function of discriminator ld as:

ld = −
N∑
n=1

[logDθD (X) + logDθD (GθG(Xε))] (9)

2.3. Training

The straightforward method to train the generator and the
discriminator is update both in every batch. However, the
discriminator network often learns much faster than the
generator network because the generator is more complex
than distinguishing between real samples and fake samples.
Therefore, generator should be run twice with each iteration
to make sure that the loss of discriminator does not go to zero.

The learning rate is initialized with 0.0002 and Adam[8]
optimizer is used to update parameters and optimize the net-
works. The weights of the adversarial perturbation elimina-
tion specified loss ξ1 , ξ2 and ξ3 used in the Eqn.5 are fixed
to 0.1, 0.45 and 0.45 separately. The training procedure of
the APE-GAN needs no knowledge of the architecture and
parameters of the target model.

3. EXPERIMENTS

We now test our APE-G algorithm on deep convolutional neu-
ral networks architectures applied to MNIST[9], CIFAR10[10]
and ImageNet[11] image classification datasets. We evalu-
ate the proposed APE-G approach against state-of-the-art
techniques to compute adversarial perturbations, including
L-BFGS[3], DeepFool[12], JSMA[13], FGSM[13], CW[14].
We consider the following deep neural network architectures
as the target models:

• MNIST: A LeNet-5-like architecture is used for MNIST
digits recognition task[15]. We replaced LeNet-5’s
RBF layer with normal fully-connected layer, and
deleted connection table which introduce sparsity be-
tween S2-C3 layer.

• CIFAR10: We trained a DenseNet-Fast-40[16] for CI-
FAR10 classification task.

• ImageNet: We used ResNet50[17] and Inception-
V3[18] pre-trained models.

The adversarial examples are generated based on the tar-
get models seperately. We use the implementation code of
FGSM and JSMA in cleverhans v2.0[19], L-BFGS and Deep-
Fool in Foolbox[20], and the author’s implementation code of
CW [14]. All the algorithms are implementated with default
parameter except parameter κ = 0 of CW-L2 and parameter
ε of FGSM. We set different noise scale parameter ε = 0.3,
ε = 0.1 and ε = 8/255 for MNIST, CIFAR10 and ImageNet
to construct FGSM attack samples respectively.

We evaluated the classification error rate of adversarial ex-
amples generated by state-of-the-art attacks algorithms, quan-
titative results are summarized in Table 1. The experimen-
tal results indicate that APE-G is effective to resist adversar-
ial examples generated from state-of-the-art attacking meth-
ods. The ”Base” column gives the classification error rates
of adversarial examples for each target model without den-
fense operations. The ”APE-G” column is the classification
error rates of adversarial examples processed by the proposed
APE-G model before fed into the target model. The results
show the Top-1 and Top-5 error rate on ImageNet. The first
row report the error rates of the clean images as the base-
line. With a 97.8% average misclassification rate for adver-
sarial examples, the LeNet trained on MNIST is easily misled.
The DenseNet, ResNet and Inception-V3(In-V3) are some-
what more robust to adversarial examples, but are still vul-
nerable to most of attack methods. The APE-G model can
reduce the recognition error rates of LeNet and DenseNet by
87% and 64% repectively. The APE-G model can at least
reduce the classification error rate of ResNetape by a factor
of two, especially for adversarial examples generated by CW.
The amazing result of Top-5 score imply that the APE-G is
at least able to move the correct class back to the top, even if
the prediction is still incorrect. At the same time, we noticed
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Table 1. Classification error rates (in %) of adversarial examples generated by various of attacking methods on MNIST,
CIFAR10 and ImageNet datasets.

Attack LeNetl DenseNet ResNetTop−1 ResNetTop−5 In-V3Top−1 In-V3Top−5
Base APE-G Base APE-G Base APE-G Base APE-G Base APE-G Base APE-G

Clean 0.8 1.2 9.9 10.3 24.4 25.2 7.2 7.8 21.2 22.7 5.4 5.8
L-BFGS 93.4 2.2 92.7 19.9 93.3 42.9 92.2 10.5 96.4 41.7 93.5 10.1
FGSM 96.3 2.8 77.8 26.4 72.9 40.1 36.6 13.2 72.2 38.0 35.7 11.0

DeepFool 97.1 2.2 98.3 19.2 98.4 45.9 96.3 11.7 98.8 48.2 96.6 12.4
JSMA 97.8 38.6 94.1 38.3 98.7 45.0 96.7 12.3 98.3 44.1 96.3 12.5
CW-L0 100.0 27.0 100.0 46.9 100.0 29.4 93.0 10.5 99.6 27.8 98.4 10.6
CW-L2 100.0 1.5 100.0 30.5 99.7 26.1 95.2 12.6 100.0 29.1 97.5 12.3
CW-L∞ 100.0 1.2 100.0 32.2 100.0 27.0 98.9 13.3 100.0 29.6 99.8 13.7

Table 2. Classification error rates (in %) of adversarial exam-
ples produced by FGSM on target models. α is the changed
value of each pixel on each step[13].

α = 0.1 α = 0.2 α = 0.3 α = 0.4

M
N

IS
T

LeNet 35.9 86.0 96.3 98.0
SRGAN 36.4 82.7 97.1 95.4

Adv. Train 1.6 3.4 6.6 59.8
Iter Attack 32.0 82.5 84.7 94.5

APE-G 0.8 1.1 2.8 21.0
Iter Attack* 1.9 2.5 4.5 22.3

C
IF

A
R

10

DenseNet 77.8 84.7 86.3 87.2
SRGAN 79.3 81.4 88.9 86.7

Adv. Train 26.4 45.2 55.9 63.4
Iter Attack 72.6 82.5 86.5 88.0

APE-G 12.2 39.6 73.7 81.7
Iter Attack* 16.5 38.3 51.7 71.0

that APE-G model has almost no efffect on accuracy on clean
examples(difference in accuracy within 0.3%).

We compared our method with image denoise(SRGAN[7])
and adversarial training[21](fine-tuning using adversarial ex-
amples) on MNIST and CIFAR10, as shown in Table 2. Rows
”LeNet” and ”DenseNet” are the error rate of adversarial ex-
amples on the target model. Image denoise(SRGAN) method
hardly brings any improvement in classification accuracy
of adversarial examples. Aadversarial training do increase
the robustness of neural networks for one-step attack (Row
”Adv.Train”) but would not help under iterative attacks(Row
”Iter Attack”). Adversarial examples against the fine-tuned
model can easily fool the deep neural networks(”Iter Attack”

column). This is maily because adversarial training is used
for regularization only to avoid overfitting. The injection of
adversarial examples during training to improve the gener-
alization of the machine learning model bring no change to
the high-dimensional linear properties of the deep model.
The proposed APE-G method significantly increases the ro-
bustness of networks to adversarial perturbations even under
iterative attacks(”Iter Attack*” column). For example, the
robustness of the networks on MNIST is dropped by 1.1%
and CIFAR10’s robustness is dropped by about 4.3% with
α = 0.1. The results demonstrate that: if APE-G is known,
an adversary that targets the APE-G+model will not bring a
significant drop in classification performance. Defensive dis-
tillation is not included in our comparision due to its limited
helpness against adversarial examples[14].

The robust performance of our method can be contributed
to the use of spatial constrain lsc that is able to effectively
eliminate the adversarial perturbations, but independent of
perturbation scale. Experimental results also revealed that
APE-G model can only effectively defense against most of
adversarial examples. As shown in Table 1, the error rates
of adversarial examples generated by FGSM is up to 38.6%.
The accuracy against complex visual adversarial images(such
as ImageNet) is also unsatisfactory. Due to the training insta-
bility of GAN, the nonsensical outputs of generator limits the
performance of APE-G framework. In spite of that, APE-G
model still significantly improved the robustness of the DNN
models against adversarial examples.

4. CONCLUSION

In this paper, we proposed a novel idea of defending against
adversarial examples via eliminate the trivial perturbations of
the input data being highly aligned with the weight vectors of
the models. Future work should focus on methods to elimi-
nate the adversarial perturbation of complex samples.
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