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ABSTRACT

Detecting anomalies using a variational autoencoder

(VAE) suffers from catastrophic forgetting when trained

on a continually growing set of normal data where only

the most recently added data is available. Solving this

problem would allow the use of the VAE for anomaly de-

tection in settings where it is difficult or even impossible

to retain all normal data at the same time. We propose

an efficient extension of a method for continual learning

which alleviates catastrophic forgetting for anomaly de-

tection using a VAE. We show on some anomaly detection

problems that the definition of normal data can be con-

tinually expanded without requiring all previously seen

data.

Index Terms— Continual Learning, Anomaly Detection,

Variational Autoencoder, Generative Replay

1. INTRODUCTION

Neural networks achieve state-of-the-art performance and in

some cases even surpass humans on machine learning tasks.

Despite their success they lack an important ability compared

to human learning, namely the ability to continually learn

tasks even if only training examples of the most recent task

are available [1, 2]. Currently neural networks suffer from a

phenomenon called catastrophic forgetting, a rapid decrease

in performance on previously learned tasks when trained on

a new task [3]. Alleviating this problem is of great interest,

for many current and future applications. Retraining a neural

network with newly acquired data, for example, typically

requires all previously used training data as well. This tradi-

tional method of retraining is hence limited by the available

memory and computational resources. Continual learning, on

the other hand, only uses the newly acquired data and can

be more memory efficient and faster. Sometimes the training

dataset consists of many small datasets which might not be

available all at the same time. It might be illegal or even im-

possible to keep all datasets. An example for this is medical

data, which has to be deleted after a certain amount of time,

or data which can not be stored due to memory constraints.

In these cases, continual learning is the only way to still train

a neural network.

There exists previous work for anomaly detection using a

VAE [4, 5, 6, 7]. But none of the proposed methods was

shown to be useful in the setting of continual learning. On the

other hand, there has been a great interest in solving the prob-

lem of catastrophic forgetting in other settings like supervised

classification, reinforcement learning and generative models.

Recent works include elastic weight consolidation (EWC)

[8] where a regularization term, whose purpose is to protect

the weights of a neural network that are most important for

solving the previous tasks, is determined after every task and

used for training of the next task. Synaptic intelligence [9]

is a similar method which only differs from EWC in the way

how the regularization term is determined. Other methods in-

clude Learning without forgetting [10] which uses the output

of a neural network to data of a current task in order to pre-

serve the responses of previous tasks. Variational continual

learning [11] uses variational inference in combination with

a coreset while Dynamically Expandable Networks expands

the neural network, keeps the weights learned on previous

tasks fixed and then combines similar neurons in order to

avoid redundant computations. The inspiring work of Shin et

al. [12] first proposed generative replay (GR) for supervised

classification and is used as a base for our method.

In this paper, we propose a simple but effective extension

of continual learning to the anomaly detection problem. The

proposed method is based on the VAE. We utilize its capa-

bility to generate data, which is currently unused in anomaly

detection, in order to enable continual learning. The proposed

method is evaluated on the MNIST [13] and KDDCup99 [14]

datasets. We further study a degeneration effect that can be

observed when the capacity of the VAE is limited.

2. PROBLEM FORMULATION

Anomalies are patterns characterised by a noticeable devia-

tion from so called normal data, where normal means com-

pliance with some typical or expected features. The detection

of anomalies requires the definition of a decision boundary

which precisely separates normal and anormalous data in a

suitable feature space. This poses several challenges [15].

First, since the training dataset is often limited, the desired
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Fig. 1. Proposed method: The marked decoder of the VAE trained on the previous task is used to generate replayed samples

from previous tasks. These are then mixed with the data of the current task and used for training of the VAE.

decision boundary can only be approximated. Thus sam-

ples close to the decision boundary can be wrongly classified.

Second, the definition of normal data might change over time.

This requires a change of the decision boundary over time as

well. In addition, noise in the data can be confused with

anomalies, which makes it difficult to distinguish between

actual anomalies and noise.

In this work, we focus on temporal changes of the defini-

tion of normal data. Consider a system for anomaly detection

which was trained on a particular set of normal data. This

could be a system for the detection of anomalous traffic in a

computer network. An anomaly could indicate an attack on

the network, which requires an immediate action. As new

types of normal traffic are introduced into the network, the

considered system could wrongly classify them as anoma-

lous. Incorporating this new normal data into the normal data

would require a retraining and hence all previous normal data.

With continual learning new data could be incorporated into

a growing set of normal data without a complete retraining

of the system and without the storage of all previous normal

data.

3. ANOMALY DETECTION USING VARIATIONAL

AUTOENCODER

The VAE is a generative model trained to approximate the

data generating distribution p(x) of an observed random vec-

tor x from a given dataset D = {x1, . . . ,xN}. The VAE

is a directed probabilistic model, which combines the con-

cept of an autoencoder with the method of variational infer-

ence [16]. It is well suited for high dimensional data with

highly nonlinear dependencies among its elements. Using

the VAE for anomaly detection is a well known technique

in the literature [4, 5, 6, 7]. Assuming i.i.d. samples, the

marginal log-likelihood ln p(x1, . . . ,xN ) of the dataset can

be decomposed as a sum over the individual samples xi as

ln p(x1, . . . ,xN ) =
∑N

i=1 ln p(xi), where each term can be

lower bound by the so called evidence lower bound (ELBO)

L(φ, θ;x) = Eqφ(z|x) [ln pθ(x|z)] −DKL(qφ(z|x)||p(z)).

(1)

qφ(z|x) is given by an encoder network with the parameter

vector φ, p(z) is the prior distribution of z in the latent space

and ln pθ(x|z) is the log-likelihood of the sample x given by

a decoder network with the parameter vector θ. The encoder

and decoder form the known structure of an autoencoder as

illustrated in Fig. 1.

During training of the VAE, the negative ELBO is mini-

mized, which is equivalent to maximizing the ELBO. By

inspection of eq. (1), we can interpret the training process as

twofold. By maximizing the expectation of the log-likelihood

ln p(x|z) w.r.t. qφ(z|x) the encoder and decoder are trained

to reconstruct the sample xi as good as possible. Since the

KL divergence DKL is non-negative, a maximization of the

ELBO forces the KL divergence to approach zero. This

means, the distribution qφ(z|x) parameterized by the encoder

approaches the prior distribution p(z).

For the detection of anomalies, a threshold-based method is

used. An anomaly score AI(x) is defined and compared with

a threshold γ. If AI(x) < γ, the sample is considered to be an

anomaly. Otherwise, it is a normal sample. While [4, 5, 6, 7]

use the reconstruction probability Eqφ(z|xi) [ln pθ(xi|z)] as

the anomaly score, we use the ELBO as the anomaly score

because it gives slightly better results in our experiments.

4. PROPOSED METHOD

If the definition of normal samples in an anomaly detec-

tion application is expanding over time, the VAE has to be

retrained in order to adapt to these changes. In this set-

ting, incorporating a new dataset Di into the existing set

{D1, . . . ,Di−1} of normal samples for training is defined as

the i-th task. Training the VAE on a sequence of tasks with

datasets D1, . . . ,Di where only Di is available on the i-th

task leads to catastrophic forgetting of what was learnt on all

Dj , j < i. In order to prevent this, we use GR as proposed

in [12]. GR uses a task solving network, the solver, and a

generative model, the generator, for overcoming catastrophic

forgetting. First the solver is trained to solve the first task

based on D1 while the generator is trained to approximate

its data generating distribution. On the following tasks, the

training process is two-fold. The generator is used to re-

produce the data of all previously solved tasks. The current

solver is then used to infer the labels of this generated data.

This data is combined with the currently available dataset
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Di to form an expanded training dataset, which contains not

only the data of the current task but also generated data of

all previously solved tasks. The ratio between the number of

generated samples and the currently available samples deter-

mines the importance of the current task. Finally, the solver

and the generator are trained on the expanded training dataset.

We propose to use a VAE as the generative model for re-

play in anomaly detection. This is a natural choice since the

generative capabilities of the VAE are unused in this applica-

tion. Our approach leads to an efficient system for continually

expanding the definition of normal samples where the solver

and the generator are implemented in one neural network.

Instead of generating all previous data before the training, we

use a copy of the decoder to generate data on a batch basis as

shown in Fig. 1. This means, that for each batch of current

data from Di we generate a corresponding amount of replay

data. In this way, we only need to store one additional set

of weights for the decoder instead of all previous normal data.

Although generative adversarial networks (GAN) [17] are

known to generate data with more details, e.g. sharper im-

ages, using them for generative replay for anomaly detection

based on the VAE is unrewarding. First, training the VAE on

the normal data and additionally training a GAN on the same

data clearly is computationally more expensive. Second,

using a VAE for generative replay leads to generated data,

which can certainly be reconstructed by itself. While using

a GAN for generative replay might lead to more detailed

data, the VAE is unable to reconstruct all those details and

hence these finer features are not considered when detecting

anomalies. Generating more detailed images as those gen-

erated by the VAE is not necessary in this application. The

more detailed data generated by a GAN might, however, help

to mitigate the degeneration effect discussed in section 5.3.

This is left open for future research.

5. RESULTS

We evaluate our method on two different datasets using a VAE

with 400, 300, 200, 100 densely connected hidden units in the

encoder, a latent space with dimension 50 and a decoder sym-

metric to the encoder. For the prior p(z) we choose a stan-

dard normal distribution. We use a sigmoid output layer for

the decoder to predict the mean of a Bernoulli distribution in

our signal model similar to [18]. For each dataset, we first

define an anomaly class, which is selected from all available

classes in the dataset. This anomaly class can either be one

single class or a set of classes. All other classes of the dataset

are considered to be normal classes. Then, starting with only

one normal class, a sequence of tasks is defined, where each

task expands the definition of normal data by one class. For

training the VAE, only the normal data is used and all re-

sults are averaged over 10 runs. We report the area under

Table 1. Attacks contained in KDDCup99 dataset and their

corresponding types

Attack Type Attack Type

back DOS bufferoverflow U2R

ftpwrite R2L guesspasswd R2L

imap R2L ipsweep PROBE

land DOS loadmodule U2R

multihop R2L neptune DOS

nmap PROBE perl U2R

phf R2L pod DOS

portsweep PROBE rootkit U2R

satan PROBE smurf DOS

spy R2L teardrop DOS

warezclient R2L warezmaster R2L

the receiver operating curve (AUC) as a performance met-

ric. The normal data is split into a training and an evaluation

set while all anomalous data is only used during evaluation.

We train the VAE for 25 epochs with a learning rate of 0.001
with the Adam optimizer and use 100 samples to evaluate the

expectation in eq. (1). As the batch size we use 16384 for

KDDCup99 and 128 for MNIST. We compare our generative

replay method (GR) with another recently proposed method

against catastrophic forgetting called Elastic Weight Consoli-

dation (EWC), an upper bound (UB) given by a VAE trained

with all data available all the time and a lower bound (LB)

given by a VAE trained only on the most recent data.

5.1. KDD Cup 1999

The KDD Cup 1999 dataset [14] consists of approximately

4.9 million tcpdumps and was prepared by Stolfo et al. [19].

It was originally used in the KDD Cup competition for train-

ing and evaluating classifiers for intrusion detection in com-

puter networks. Since the data consists of raw tcpdumps, it

contains not only discrete values like the individual parts of

an IP address but also categorical values like the transport

and application protocols. In total this leads to 41 features for

each sample. In order to train the VAE with such data, it has

to be preprocessed. We first map each categorical feature to

an integer starting from 0. After this we normalize all fea-

tures to the interval [0, 1]. The resulting feature vectors can

then be used to train and evaluate the VAE. We use approxi-

mately 10% of the data for evaluation and the rest for training.

The KDDCup99 dataset contains 22 uniquely labeled attacks

and one class considered normal. Although there are many

different attacks, they can be grouped in four types as illus-

trated in Table 1. We define the anomaly class as all attacks

of type DOS. For creating a sequence of tasks, we start with

the normal class and in each task the definition of normal data

is expanded by one attack selected from all types other than

DOS. As can be seen in Fig. 2, our method (GR) achieves
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Fig. 2. AUC on KDDCup99, MNIST and the degeneration due to repeated GR on both

practically the same results as the upper bound (UB). EWC

completely fails to prevent the VAE from catastrophic forget-

ting. It is worth noting that EWC as well as the lower bound

on some tasks show comparable performance as GR while on

the previous and next task they completely fail. This is be-

cause the current tasks data encompasses the previous tasks

data and hence the VAE generalizes well on previous tasks. If

the VAE is trained on a sharply defined task, it is only able to

identify the current tasks data as normal while data of previ-

ous tasks is classified as anomalous.

5.2. MNIST

The MNIST dataset consists of 70000 grayscale images of

hand-written digits with a resolution of 28 × 28 pixel [13].

Although it is a popular dataset for classification, it can also

be used for anomaly detection. For this we first preprocess

the data by normalizing each pixel to [0, 1]. We use 60000
images for training and 10000 for evaluation and define the

digit 0 to be the anomaly class. For creating a sequence of

tasks, we first start with the digit 1 as the normal class and ex-

pand this definition in each task by the next higher digit. The

results are illustrated in Fig. 2. While our method using GR

still achieves almost the same performance as the upper bound

(UB), a notable decrease in performance can be observed for

GR on tasks 5 to 9. This phenomenon is discussed in section

5.3. In contrast to the KDDCup99 dataset, a decrease in per-

formance of both UB and GR is notable after task one. This

phenomenon was also observed with a different ordering of

the tasks. While defining the normal class with two digits sig-

nificantly hurts performance, adding even more digits seems

to have a negligible effect. EWC again fails and performs the

same as the lower bound (LB).

5.3. Replay Degeneration

Due to the well known inability of the VAE to generate highly

detailed data [20], i.e. it generates blurry images, repeated GR

causes the generated data to represent the original data with

an ever decreasing precision. This has a direct effect on con-

tinual learning since the replayed data is used for training in

each new task and hence leads to a degeneration of the VAEs

ability to solve the task. We study this effect by first train-

ing a VAE on the last task of the KDDCup99 as well as the

MNIST dataset and repeatedly use GR to train on the same

task. This task uses the widest definition of the normal class

according to the task definition of sections 5.1 and 5.2. By

using this setup, we can observe how long the VAE is able to

generate useful data without suffering from forgetting. The

results of this experiment are illustrated in Fig. 2. We use

the VAEs performance on the last task as a baseline (KD-

DCup99: KB, MNIST: MB) and compare it with repeated

replay (KDDCup99: KDG, MNIST: MDG). On the KDD-

Cup99 dataset the VAE does not suffer from forgetting over

the tested 9 replays while on MNIST forgetting starts right af-

ter the first replay and increases with every replay. This is due

to the much higher complexity of the MNIST data compared

to KDDCup99 data. The generated data lacks details, when

compared to the original data, and leads to ever increasing for-

getting when using repeated GR. One way of alleviating this

could be to incorporate the continued replay into the training

of the VAE. This could be done by training the VAE not only

to reconstruct the training data but to also reconstruct the re-

peated replays of this data. Training a VAE like this would be

similar to training a chain of VAEs with shared weights. We

leave this open for future research.

6. CONCLUSION

We study the extension of GR for continual learning to the

problem of anomaly detection using VAEs and propose a

simple but effective system to mitigate catastrophic forget-

ting. While achieving results comparable to an upper bound,

the method requires no additional components other than the

VAE. It instead makes use of the generative capability of the

VAE, which is otherwise unused in the context of anomaly

detection.
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