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ABSTRACT
Deep neural network (DNN) has a wide range of appli-
cations in various fields, including solving sparse inverse
problems. In this paper, we propose a novel network called
the Stein’s unbiased risk estimate based-trainable iterative
thresholding algorithm (SURE-TISTA) for sparse signal re-
covery problems. Without prior information, SURE-TISTA
outperforms TISTA, an algorithm based on the minimum
mean squared error (MMSE) estimator. SURE-TISTA also
shows a great robustness in many cases including large-scale
and large-variance problems. Meanwhile, SURE-TISTA us-
es fewer learnable variables to achieve similar performance
as learned approximate message passing (LAMP), which
has more learnable parameters. Without any error measure
estimator, SURE-TISTA achieves a near MMSE-based per-
formance. Our numerical results indicate that SURE-TISTA
is superior to TISTA and other traditional algorithms in many
aspects, which can be promising in image denoising.

Index Terms— compressed sensing, deep learning, itera-
tive thresholding algorithm, the Steins unbiased risk estimate,
error measure

1. INTRODUCTION

Compressed sensing (CS) refers to a technique that recovers
sparse signal accurately with a sampling ratio far below the
Nyquist rate [1]. Consider the problem below of signal re-
covery from a noisy linear observation y ∈ RM ,

y = Ax+ n (1)

where A ∈ RM×N (M � N) is a measurement matrix, x ∈
RN is the signal to be recovered and n ∈ RM is a vector
of additive white Gaussian noise (AWGN) samples with zero
mean and variance σ2.

Many iterative algorithms have been developed for the
sparse inverse problem. The iterative shrinkage thresholding
algorithm (ISTA) [2] is one of the best-known algorithms.
It aims to recover the original signal through solving Lasso
problem [3]. Recently Donoho and Maleki proposed ap-
proximate message-passing algorithms (AMP), which can
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be asymptotically characterized by a simple scalar recursion
called state evolution (SE) [1]. However, AMP can only be
utilized when the measurement matrix has independent and
identically distributed (i.i.d.) Gaussian entries. Orthogonal
AMP (OAMP) is proposed to overcome the restrictions. In
OAMP, Onsager corrected term, the key part of AMP, vanish-
es [4].

Recently, deep learning (DL) has been applied to vari-
ous researches due to its powerful ability of solving complex
problems. In addition to natural language processing (NLP)
and pattern recognition [5,6], DL is gradually applied to com-
munication systems and signal processing [7]. A promising
method of DL, called deep unfolding, can “unfold” an exist-
ing algorithm into a signal-flow graph. Each layer contains an
iteration and standard deep learning techniques can be used to
find optimal parameters of the algorithm [8]. Learned ISTA
(LISTA) [9], learned approximate message passing (LAM-
P) [10] and trainable ISTA (TISTA) [11] are derived from
deep unfolding and iterative recovery algorithm. And they
all outperform their original algorithms.

When probability density function of random variable
x is known, the optimal estimator is the minimum mean
squared error (MMSE) [12] estimator. For instance, the op-
timal structure of OAMP contains an MMSE estimator and
TISTA has an MMSE estimator-based shrinkage unit [11].
However, such prior information may be unavailable in par-
ticular environment. SURE can achieve the Bayesian optimal
performance without knowing prior information [13], which
can be applicable to iterative recovery algorithm.

In this paper, we propose a novel algorithm called the
Stein’s unbiased risk estimate based-trainable iterative thresh-
olding algorithm (SURE-TISTA) for sparse signal recovery.
SURE-TISTA utilizes DL network and achieves great perfor-
mance without error measure estimator and prior information.
Using fewer learnable parameters, SURE-TISTA estimates
the error measure terms correctly. Numerical results demon-
strate that SURE-TISTA outperforms TISTA in many aspects,
especially in large-scale and large-variance problems.

2. ITERATIVE RECOVERY ALGORITHMS

We first review several recovery iterative algorithms to solve
the original problem (1) in this section.
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2.1. ISTA

ISTA [2] is a well-known algorithm defined by the following
simple iterations:

rt = ŝt + βAT (y −Aŝt)
ŝt+1 = ηst(rt;λ)

(2)

where β is a step size and ŝt is initialized by ŝ0 = 0.
ηst(·;λ) : RN → RN is a soft thresholding shrinkage func-
tion (Readers are referred to [3] for details).

2.2. AMP and OAMP

AMP is a new recovery algorithm and manifests as:

rt = ŝt +A
T (y −Aŝt) + qt

ŝt+1 = ηst(rt)
(3)

Initialized with ŝ0 = 0 and z0 = y, AMP has a key part qt
called ‘Onsager correction term’ (details in [1]). AMP outper-
forms ISTA in convergence speed, but it does not work well
unlessAi,j ∼ N (0,M−1).

Based on de-correlated linear estimation and divergence-
free non-linear estimation, OAMP is proposed as:

rt = ŝt +W (y −Aŝt)
ŝt+1 = η(rt)

(4)

In this algorithm, two error measures can be estimated as,

τ̂2t =
1

N
tr
(
BBT

)
· v̂2t +

1

N
tr
(
WW T

)
· σ2 (5)

v̂2t = max{‖y −Ast‖
2 −M · σ2

tr (ATA)
, ε} (6)

where B = I −WA, and ε is a quite small positive con-
stant. The de-correlated linear estimatorW can be construct-
ed from A. ηt is a divergence-free estimator (i.e. a specific
function) and its thresholding τ̂t can be estimated from v̂t. It
has been proved that SE for OAMP is accurate for general
unitarily-invariant matrices, which is advantageous over AM-
P.

3. PROPOSED SURE-TISTA

In this section, we propose a novel signal recovery network
called SURE-TISTA based on ISTA, SURE framework and
deep unfolding network.

3.1. Deep Unfolding Network Applied to SURE-TISTA

Using a T -layer structure, deep neural network (DNN) can
approximate functions applied to a certain algorithm that
maps the input x0 ∈ RN to the output xT ∈ RN , i.e.

xT = fT−1(· · ·ft(· · ·f2(f1(x0; θ1); θ2) · ··; θt); · · ·; θT−1)
(7)

where θ = [θ1, θ2, · · ·, θT−1] denotes the parameters lead-
ing to the best approximation mapping function in this feed-
forward networks. It is learned during training process to
minimize the following loss function:

L(θ) = 〈|xT (θ)− x0|2〉 (8)

where 〈x〉 = 1
N

∑
i xi as x ∈ RN . When f1, f2, ..., fT−1

turn to be certain functions, the final output xT (θ) and loss
function L(θ) are only correlated to the chosen θ.

The main idea of deep unfolding [8] is to map a specific
algorithm into a DNN layers. In this new architecture, belief
propagation (BP) is used as the inference algorithm, which
is a message passing (MP) algorithm based on graph factor.
Thus, we can propose a new network tuning its parameters
based on MSE optimization.

3.2. Recursive Formula of SURE-TISTA

The recursive formula of SURE-TISTA is presented below to
solve problem (1), which contains linear estimation (LE) and
non-linear estimation (NLE):

LE : rt = st +W (y −Ast) (9)

NLE : st+1 = Î(rt;α) (10)

where W = N
tr(ŴA)

Ŵ , Ŵ = AT (AAT )−1 and α is a
trainable variable. The initial condition is s0 = 0. And the
estimator Î(·) is a denoiser function and is divergence-free,
which is inspired by [4].

Definition 1 A divergence-free denoiser Î(·) is constructed
as [4]

Î(rt) = C(I(rt)− div{I(rt)} · rt) (11)

where I(·) is an arbitrary function and C is a constant.

It can be proved that div{Î(rt)} = 0 in high-dimension.

3.3. Parameter Optimization Based on SURE Frame-
work

In this subsection, we will show how SURE framework can
be utilized over TISTA and how we can achieve an optimal C
in the denoiser.

Consider the problem below to find a specific function
ϑ(·) that can minimize the following MSE:

MSE = 〈|ϑ(y)− x|2〉 (12)

We use x to denote the sparse vector to be recovered. In
practice, we can only obtain a “noisy” version observation
y = x + n. Since x is a random variable, we define an ex-
pectation function E(·). In order to achieve an unbiased esti-
mation of (12), we leverage the SURE framework: according
to [14], an unbiased estimation of MSE is:

ε = 〈ϑ(y)2 − 2yϑ(y) + 2τ2 div{ϑ(y)}〉+ 〈x2〉 (13)
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where τ2 is the estimation of the effective noise variance.
Thus, E(ε) = E(MSE).

According to [1], we consider a signal recovery problem
as a denoising problem and assume the observation at each
iteration t, i.e. the original signal with some Gaussian per-
turbation is rt = x0 + τtwt, where wt ∈ N (0, 1) and τ2t is
the estimation of the effective noise variance. Our goal is to
optimize C in (11),

C = argmin〈|Î(rt)− x0|2〉 (14)

We denote an unbiased estimation of 〈|Î(rt) − x0|2〉 as χ,
according to (13),

E{χ} = E{〈Î(rt)2 − 2rtÎ(rt) + 2τ2 div Î(rt)〉+ 〈x2
0〉}

= E{〈(Î(rt)− rt)2〉} −
(
E{〈(x0 +

√
τtwt)

2〉} − 〈x2
0〉
)

=
1

N
E
(
|Î(rt)− rt)|2

)
− τ2t

Leveraging least square (LS) ,we can solve the problem C =
argminE{χ} to achieve the optimal C:

Coptimal =
(
K(rt)K(rt)

T
)−1

K(rt)rt (15)

where K(y) = I(y)− div{I(y)} · y.
In this paper, we introduce a pointwise exponential

shrinkage function to construct the denoiser:

η(y) =

K∑
k=1

akθk(y), θk(y) = ye−(k−1) y2

2T2 (16)

where k is the number of parameters, ak is the coefficient
of θk. T is a decision factor and is correlated to τ2t . We
recommend K = 2 [14] and define a family of shrinkage
function to minimize MSE:{

η1(y) = a1θ1(y)

η2(y) = a2θ2(y)
(17)

Then we concatenate them together and calculate the diver-
gence,

I(rt) ≡
(
η1(rt)
η2(rt)

)
= A

(
θ1(rt)
θ2(rt)

)
(18)

div I(rt) ≡ A
(
div{η1(rt)} div{η2(rt)}

)T (19)

where A = diag(a1, a2). In this paper, we consider E as an
identical matrix. Then we can deduce that

Coptimal =
(
K(rt)K(rt)

T + γE
)−1

K(rt) · rt (20)

where kernel function K(rt) = I(rt)− div I(rt) · rTt . We
introduce an `2 regularization here, where γ is a small pos-
itive constant. Then according to (11), we can achieve the
divergence-free denoiser Î(rt).

st

A W

 I(rt;α)
rt

Î(rt;α) St+1

y y

Coptimal

Fig. 1. A specific layer structure of SURE-TISTA with train-
able parameter α.

3.4. General Structure of SURE-TISTA

The structure of SURE-TISTA consists of three parts: re-
cursive formula (9, 10), a divergence-free denoiser and deep
unfolding network. The optimal C of the denoiser can be
worked out based on SURE framework. Here we treat T as
the only learnable parameter and redenote it using α. Owing
to the close correlation between T and τ2t , when we treat α
(i.e. T ) to be learnable, α itself can “carry” the information
of noise variance. Thus we no longer need any noise vari-
ance estimator. A specific layer structure of SURE-TISTA is
demonstrated in Fig. 1. Unfolding each iteration into DNN
layers, we can find the layer-dependent parameter αoptimal of
each layer.

4. NUMERICAL RESULTS

In this section, we provide numerical results on our work. For
a Bernoulli-Gaussian sparse data x ∈ RN , each entry is a
realization drawn i.i.d from

pBG(x) = (1− λ)δ(x) + λN (x; 0, 1) (21)

where λ decides the sparse level of x, we set λ = 0.1. SNR is
set to be 40dB. The mini-batches are of size-1000 for training
and testing respectively. Training and testing set are inde-
pendent but from the same distribution. We implement our
experiment over Tensorflow [15] with Adam optimizer [16].
SNR is defined as SNR = E{‖Ax‖2}/E{‖n‖2}.

4.1. Performance Comparison

We first consider the i.i.d Gaussian matrixAi,j ∼ N (0,M−1).
Performance is described by the normalized MSE (NMSE),
i.e.,

NMSE = ‖st+1 − x‖2/‖x‖2 (22)

M and N are set to be 250 and 500 originally. Fig. 2(a)
exhibits that SURE-TISTA has a much better curve than AM-
P and LISTA and achieves a better performance both in speed
and convergence level than TISTA. We note that TISTA re-
quires prior information, but SURE-TISTA can recover sig-
nals without a prior. Fig. 2(b) and Fig. 2(c) indicate a s-
plendid adaptability of SURE-TISTA to large-scale and large-
variance problems in practical environment.
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(a) Comparison with AMP, LISTA and TISTA.
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(b) Comparison with LISTA, LAMP-expo and TISTA
in large variance. i.e. Ai,j ∼ N (0, 1)

2 4 6 8 10 12 14 16

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

iteration

no
rm

al
iz

ed
 M

SE
 (

dB
)

 

 
SURE−TISTA N=500
SURE−TISTA N=1000
SURE−TISTA N=2000

(c) Effect of size of A :
(250, 500)(500, 1000)(1000, 2000)

2 4 6 8 10 12 14 16

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

iteration

no
rm

al
iz

ed
 M

SE
 (

dB
)

 

 

 cond (A) = 1

 cond (A) = 15

 cond (A) = 100

 cond (A) = 1000

TISTA

SURE−TISTA

(d) Effect of condition number. SNR =
40dB.cond(A) = 1, 15, 100, 1000.
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(e) Effect of trainable parameters.
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Fig. 2. Numerical results of SURE-TISTA. SNR=40dB.

Table 1. Numbers of trainable variables in each layer
LAMP-`1 LAMP-expo TISTA SURE-TISTA
NM + 2 NM + 3 1 1

Then we consider A is ill-conditioned (Fig. 2(d)). Both
SURE-TISTA and ISTA have degraded performance when
condition number increases. In order to overcome the prob-
lem, we apply an improved method in [11]: define Ŵ =
AT (AAT + λE)−1, where λ is a real constant. Although
brief explanation is provided in [11], we provide another ex-
planation on this improvement: Since sparse inverse problems
can be seen as convex optimization problems, we introduce an
`2 regularization λ for a better performance of convergence,
which is often considered in optimal solution with large con-
dition numbers. λ can help changing the objective function
into a strongly convex function.

4.2. Analysis of Trainable Parameters and Error Mea-
sure Estimators

Table 1 summarizes the numbers of trainable variables of
LAMP-`1 [10], LAMP-expo (LAMP with an exponential
shrinkage function [10]), TISTA and SURE-TISTA in one
layer. Their NMSEs are demonstrated in Fig. 2(e) in the

case of Ai,j ∼ N (0,M−1). Although SURE-TISTA has
fewer trainable variables than LAMP-expo, they have similar
curves. Moreover, (NM + 3) variables of LAMP indicate
its dependence on M and N , but the number of trainable
variables of SURE-TISTA is only related to the number of
layers, which reduces training complexity significantly.

We also adopt error measure estimators (5) and (6) to
SURE-TISTA and let T = β

√
τ̂2t with learnable variable β.

Fig. 2(f) shows that performance of two methods are quite
similar. In the other words, our novel network is successful in
estimation of error measures.

5. CONCLUSION

In this paper, we propose a novel network SURE-TISTA to
recover signal for compressed sensing. Based on SURE
framework, SURE-TISTA outperforms TISTA and does
not require prior information nor error measure estimators.
SURE-TISTA also exhibits a great robustness in different
setups, especially in the case of large variance. Using fewer
learnable variables, SURE-TISTA has a better performance
than some other algorithms. We believe SURE-TISTA can
be adapted for image denoising and wireless communication
systems, which will be one of our future works.
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