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ABSTRACT

In this paper, we propose a method of improving temporal Convo-
lutional Neural Networks (CNN) by determining the optimal align-
ment of weights and inputs using dynamic programming. Conven-
tional CNN convolutions linearly match the shared weights to a win-
dow of the input. However, it is possible that there exists a more
optimal alignment of weights. Thus, we propose the use of Dynamic
Time Warping (DTW) to dynamically align the weights to the in-
put of the convolutional layer. Specifically, the dynamic alignment
overcomes issues such as temporal distortion by finding the minimal
distance matching of the weights and the inputs under constraints.
We demonstrate the effectiveness of the proposed architecture on
the Unipen online handwritten digit and character datasets, the UCI
Spoken Arabic Digit dataset, and the UCI Activities of Daily Life
dataset.

Index Terms— Time series classification, convolutional neural
network, dynamic programming, dynamic time warping

1. INTRODUCTION

Neural networks and perceptron learning models have become a
powerful tool in machine learning and pattern recognition. Early
models were introduced in the 1970s, but recently have achieved
state-of-the-art results due to improvements in data availabil-
ity and computational power [1]. Convolutional Neural Net-
works (CNN) [2] in particular have achieved the state-of-the-art
results in many areas of image recognition, such as offline hand-
written digit recognition [3], text digit recognition [4, 5], and object
recognition [6, 7].

Most recent successes in time series recognition have been
through the use of Recurrent Neural Networks (RNN) [8] and in
particular, Long Short-Term Memory (LSTM) networks [9]. Typ-
ically, CNN-based models have been used in the image domain,
however, they have also been used for time series patterns. A pre-
decessor to CNNs, Time Delay Neural Networks (TDNN) [10, 11]
used time-delay windows similar to the filters of CNNs. CNNs were
also used to classify time series by embedding the sequences into
vectors [12] and matrices [13, 14].

CNNs use sparsely connected shared weights that act as a fea-
ture extractor and maintain the structural aspects from the input. In
particular, these shared weights are linearly aligned to each corre-
sponding window value of the input. However, the linear alignment
assumes that each element of the input window correspond directly
to each weight of the filter in a one-to-one fashion. It is possible that
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there is a more optimal alignment of the shared weights and the input
values.

We propose a method of finding that alignment using dynamic
programming, namely Dynamic Time Warping (DTW) [15]. DTW
estimates the globally minimal distance between two time series pat-
terns by elastically matching elements using dynamic programming
along a constrained path on a cost matrix. While DTW is tradition-
ally used just as a distance measure, we exploit the elastic matching
byproduct of DTW to align the weights of the filter to the elements
of the corresponding receptive field to create more efficient feature
extractors for CNNs.

The contribution of this paper is twofold. First, we propose a
novel method of aligning weights within the convolutional filters of
CNNs by dynamically matching the weights to similar input values.
Using the discovered dynamic weight alignment, we create a non-
linear matching to create more effective convolutions. Second, we
demonstrate the effectiveness of the proposed method on multiple
time series datasets including: Unipen online handwritten character
datasets, the UCI Spoken Arabic Digit dataset, and the UCI Activi-
ties of Daily Life dataset and perform a comparative study to reveal
the benefits of the proposed weight alignment.

2. RELATION TO PRIOR WORK

Dynamic neural networks is an emerging field in neural model
learning Dynamic Filter Networks (DFN) [16] use filter-generating
networks to produce filters that are used depending on the input.
Dynamic Convolutional Neural Networks (DCNN) [17] use dy-
namic k-Max Pooling to simplify CNNs for sentence modeling.
Deformable Convolutional Networks [18] use deformable convolu-
tions to relax the constraints of a traditional convolutional window.
DTW-NNs [19] similarly use DTW as a nonlinear inner product for
regular feed forward neural networks. The distinction between these
models and the proposed method is that we use dynamic program-
ming to estimate the optimal weight alignment within convolutions.

3. DYNAMIC WEIGHT ALIGNMENT FOR CNNS

The goal of the proposed method is to exploit dynamic programming
to determine the optimal alignment of weights for convolutional lay-
ers in CNNs. In this case, we define “optimal” as the globally mini-
mal warping path determined by DTW. In other words, instead of the
conventional linear inner product of a convolution, the convolutional
filter weights and the input window values are dynamically matched
to minimize the difference between similar features of the weights
and the input values. Figure 1 demonstrates the difference between
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(a) Convolution with linear weight alignment (b) Convolution with dynamic weight alignment

Fig. 1: The comparison between a conventional linear convolution (a) and the proposed convolution with dynamic weight alignment (b). Both
illustrate 1D convolutions with four weights w1, . . . , w4 at stride 1. The layer l − 1 is the previous layer with elements a1, . . . , a7 and layer
l is the resulting feature map from the convolution with elements z1, . . . , z4. Each dot is the product of the corresponding weight and input
and the blue circle is the sum of the products.

a conventional convolutional layer with linear weight alignment and
the proposed CNN with dynamic weight alignment.

3.1. Convolutional Neural Networks

A CNN is an artificial neural network which contains one or more
convolutional layers. The key features of convolutional layers is that
they have sparse connectivity and use parameter sharing. Specifi-
cally, the weights of a convolutional layer are shared for each cor-
responding output element’s local receptive field. In this way, a for-
ward calculation of a convolutional layer is identical to a convolution
operation where the shared weights are the filter and the output is a
feature map.

Formally, the feature map z(l)j of a convolutional layer is defined
as:

z
(l)
j =

I−1∑
i=0

w
(l)
i a

(l−1)
i+j + b(l) (1)

for each element j, where l is the convolutional layer, l − 1 is the
previous layer, i is the index of the filter, and I is the window size.
We denote w(l)

i , a(l−1)
i+j , and b(l) as the shared weights, the previ-

ous layer activations, and the bias respectively. In other words, z(l)j
is the inner product of the shared weights wl and each window of
the previous layer a(l−1)

j , . . . , a
(l−1)

j+(I−1). This inner product linearly
matches the weights to the inputs within the window. However, it is
plausible that there exist instances where particular weights should
be matched with more optimal inputs, for example noisy elements or
feature translation and scale variance within the filter.

3.2. Dynamic Weight Alignment

The conventional inner product of a convolution acts much like a
similarity function. Thus, the general idea is to align the weights so
that there is a stronger activation to input windows that are similar
but only slightly misaligned. To optimize the alignment of weights,
we adopt a dynamic programming solution, specifically DTW.

3.2.1. Dynamic Time Warping

DTW is an asymmetric positive semi-definite similarity function that
is traditionally used as a distance measure between sequences. It
is calculated using dynamic programming to determine the optimal
match of elements between two sequences. By matching elements,
the sequences are warped in the time dimension to align similar fea-
tures of the time series.

DTW finds the total cost over an optimal warping path of a local
cost matrix using dynamic programming. Given two discrete time
series, sequence p = p1, . . . , pi, . . . , pI of length I and sequence
s = s1, . . . , sj , . . . , sJ , where i and j are the index of each time
step and pi and sj are elements at each time step, the DTW-distance
is the global summation of local distances between pairwise element
matches. Namely, the DTW-distance is denoted as:

DTW(p, s) =
∑

(i′,j′)∈M

||pi′ − sj′ || , (2)

where (i′, j′) is a pair of matched indices i′ and j′ corresponding to
the original indices i of p and j of s, respectively. The setM con-
tains all matched pairs of i′ and j′. Additionally, the set of matched
pairsM can contain repeated and skipped indices of i and j from the
original sequences, therefore,M has a nonlinear correspondence to
1, . . . , i, . . . , I and 1, . . . , j, . . . , J . || · || is a local distance function
between elements.

3.2.2. Dynamic Weight Alignment with Shared Weights

The forward pass calculation is done in two steps. First, DTW is
calculated between the shared weights of each convolution and the
receptive field window of the input. This is possible if we consider
the weights of the convolution as the time series p and the window
of the input as s. The result is a mapping of the shared weights to the
input values based on minimizing the L2 distance between sequence
elements.

Second, the convolution is calculated using the stored mapping.
Namely, we propose using DTW to determineMj and then calcu-
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late the result of the convolution z(l)j :

z
(l)
j =

∑
(i′,j′)∈Mj

w
(l)

i′ a
(l−1)

j′ + b(l), (3)

whereMj is the set of matched indices i′ and j′ corresponding to
the index i of w(l) and the index j in a(l−1) , respectively. When
used in this manner, we create a nonlinear convolutional filter that
acts as a feature extractor similar to using shapelets with DTW [20].
In addition, it is important to note that unlike a conventional CNN,
the set of matched indicies Mj allows for duplicate and skipped
values of w(l)

i′ and a(l−1)

j′ .
The idea is that DTW will match similar features from the fil-

ter to the input and skip elements with a very high distance to the
weights and perform small translations. Therefore, the process of
aligning the weight using DTW is repeated for every stride of the
convolution during all forward passes including during training and
testing. Consequently, the alignment is only kept for the immediate
forward and backward round and recalculated on the fly for subse-
quent iterations.

3.3. Backpropagation of Convolutions with Dynamic Weight
Alignment

In order to train the network, Stochastic Gradient Decent (SGD) is
used to determine the gradients of the weights with respect to the
error. This is done to update the weights in order to minimize the
loss. For a CNN, the gradient of the error with respect to the shared
weights is the partial derivative:

∂C

∂w
(l)
i

=
∑
i

∂C

∂z
(l)
j

∂z
(l)
j

∂w
(l)
i

, (4)

where C is the loss function. In a conventional CNN, w(l)
i has a lin-

ear relationship to z(l)j , thus
∂z

(l)
j

∂w
(l)
i

can be calculated simply. How-

ever, given the nonlinearity of the weight alignment, the calculation
of the gradient is reliant on the matched elements determined by the
forward pass in:

∂C

∂w
(l)
i

=
∑
i

∂C

∂z
(l)
j

∂
(∑

(i′,j′)∈Mj
w

(l)

i′ a
(l−1)

j′ + b(l)
)

∂w
(l)
i

(5)

= δ(l+1)
∑

(i′,j′)∈Mj

a
(l−1)

j′ . (6)

where δ(l+1) is the backpropagated error from the previous layer as
determined by the chain rule.

4. EXPERIMENTS AND RESULTS

4.1. Datasets and Evaluation

We demonstrate the effectiveness of the proposed method by quanti-
tatively evaluating the architecture and compare it to baseline meth-
ods for three diverse datasets.

The Unipen multi-writer 1a, 1b, and 1c datasets [21] are con-
structed from pen tip trajectories of isolated numerical digits, upper-
case alphabet characters, and lowercase alphabet characters respec-
tively. The UCI Spoken Arabic Digit Data Set [22] contains spoken

Table 1: Accuracy (%) on the evaluated datasets. The highest accu-
racy for each dataset is in bold.

Unipen UCI

Method 1a 1b 1c Arabic ADL

Proposed 98.54 96.08 95.92 96.95 90.0

CNN 98.08 94.67 95.33 95.50 87.1
LSTM 96.84 92.31 89.79 96.09 81.4

SVM GDTW [24] 96.2 92.4 87.9 – –
HMM CSDTW [25] 97.1 92.8 90.7 – –
DTW-NN [19] 96.8 – – – –
Google [26] 99.2 96.9 94.9 – –
Tree Dist [27] – – – 93.1 –
CHMM – – – 98.4 –

∆(∆MFCC) [28]
WNN [29] – – – 96.7 –
GMM + GMR [23] – – – – 63.1
Decision Tree [30] – – – – 80.9

Arabic digit patterns encoded using 13-frequency Mel-Frequency
Cepstrum Coefficients (MFCC) in 10 classes. The UCI Activities
of Daily Life (ADL) Recognition with Wrist-worn Accelerometer
Data Set [23] is made of patterns from 7 classes of ADL actions.
The Unipen and the UCI ADL datasets were divided into three sets
for training, a test of 10% of the data, a training set of 90% of the
data, and 50 patterns set aside from the training set for a validation
set. The UCI Arabic data has a pre-defined division of the data with
a speaker-independent training set and test set.

4.2. Architecture Settings

For the experiment, we implement a five-layer CNN. The first two
hidden layers are convolutional layers with 50 nodes of the proposed
dynamically aligned filters. In addition, we use batch normaliza-
tion [31] on the results of the convolutional layers. The third and
fourth layers are fully-connected layers with a hyperbolic tangent
tanh activation and have 400 and 100 nodes respectively. The final
output layer uses softmax with the number of outputs corresponding
to the number of classes.

The learning rate ηt at iteration t is defined as ηt = η0
1+αt

, where
η0 is the initial learning rate and α is the decay parameter. For all
of the experiments, we use the 1/t progressive learning rate with a
η0 = 0.001 and α = 0.001 for the convolutional layers and a static
learning rate of 0.0001 between the fully-connected layers.

Given that the experimental datasets are made of sequences of
different dimensions, the filters should correspond accordingly. The
convolutional filters were of size 8× 2 at stride 2, 6× 13 at stride 2,
and 12×3 at stride 4 for the Unipen datasets, the UCI Arabic dataset,
and the UCI ADL dataset, respectively. A stride was used to reduce
redundant information and decrease computation time. The exper-
iment uses batch gradient decent with a batch size of 100, 50, and
5 for the three datasets respectively and for 60,000 iterations. The
batch sizes were selected based on the size of the training sets and
were chosen to iterate through epochs at generally the same rates.
This is the reason for the very small batch of 5 used for the ADL
dataset.
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In the DTW implementation, we used the asymmetric slope con-
straint proposed by Itakura [32] and Euclidean distance as the local
distance function || · || of Eq. (2).

4.3. Comparison Methods

We report classification results literature as well as evaluate the
datasets on established state-of-the-art neural network methods.

To evaluate the proposed method, we compare the accuracy to
current methods from literature. For the online handwritten char-
acter evaluations, we compare results from two classical methods,
SVM GDTW [24] and HMM CSDTW [25], and two state-of-the-art
neural network methods, DTW-NN [19] and Google [26]. For the
spoken Arabic digits, there is one reported neural network solution
using a WNN [29] as well as other models using a Tree Distribution
model [27] and a Continuous HMM of the second-order derivative
MFCC (CHMM ∆(∆MFCC)) [28]. For the ADL dataset, we com-
pare our results to the original dataset proposal [23] using a Gaus-
sian Mixture Modeling and Gaussian Mixture Regression (GMM +
GMR) and the best results of Kanna et al. [30] using a Decision Tree.

The evaluated baselines were designed to be direct comparisons
for the proposed method. The LSTM is used as the established
state-of-the-art neural network method for sequence and time series
recognition and a traditional CNN is used as a direct comparison
using standard convolutional layers. Both comparative models are
provided with the same exact training, test, and validation sets as
the proposed method. Furthermore, the evaluated methods use the
same batch size and number of iterations as the proposed method
for the respective trials. For the LSTM evaluation, an LSTM with
two recursive hidden layers, two fully-connected layers, and a soft-
max output layer was used. The second comparative evaluation was
using a CNN with the same exact hyperparameters as the proposed
method, but with standard convolutional nodes.

4.4. Results and Discussion

The results of the experiments are shown in Table 1. The results
show that the proposed method surpassed all of the results of a con-
ventional CNN as well as the LSTM. Furthermore, the results are
competitive with the state-of-the-art methods despite many of them
being tailored to the respective datasets and data types.

In the online handwriting and ADL experiments, the LSTM per-
formed poorly compared to both CNNs. One reason for the limited
performance of the LSTM is that each individual element of those
datasets do not contain a significant amount of information and the
model needs to know how all elements work together to form spa-
cial structures. For example, for large tri-axial accelerometer data,
individual long-term dependencies are not as important as the local
and global structures whereas CNNs excels. Another reason for the
poor performance of the ADL dataset could be the low amount of
training data (600 training samples), high amounts of noise, and a
high variation of patterns within each class. However, the LSTM did
comparatively well on the spoken Arabic digits.

The most important comparison is the conventional CNN with
linearly aligned weights against the proposed method with dynami-
cally aligned weights. In addition to the increased accuracy, we ob-
served from Fig. 2 that compared to the conventional CNN, the pro-
posed method achieves a higher accuracy during all parts of training
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Fig. 2: Test accuracies of the Unipen online handwrittenof a conven-
tional CNN and the proposed CNN with dynamic weight alignment.

but especially during the early stages. This indicates that the nonlin-
ear alignment is able to optimize the weights efficiently.

One explanation of the improved accuracy is that aligning the
weights to their similar corresponding inputs is more efficient than
conventional linear matching. The weights of a convolutional layer
learned by a CNN act like filter for feature extraction [2]. The pur-
pose of using dynamically aligned weights is to warp the assignment
of weights to their most similar corresponding inputs. In this way,
noisy input values can be skipped and normally muted but relevant
features are enhanced. This provides a more robust convolution.

4.5. Computational Complexity

In the case of the proposed method, the number of elements in the
aligned sequences is equal to I and J , where I and J is the width of
the filter and the input, respectively. Furthermore, the complexity of
each DTW calculation is O(IJ), which is required for every appli-
cation of a convolutional filter. Thus, the computational complexity
of the convolutional layer with dynamic weight alignment becomes
O(NIJ

2

S
), where N is the number of convolutional nodes and S is

the stride. Compared with the standard convolution of a temporal
CNN with a complexity of O(NIJ

S
), this a relatively small increase

in complexity compared to the overall network.
The per classification runtime for the traditional CNN was

0.036s, 0.092s, and 0.029s for the Unipen, ADL, and Spoken Arabic
datasets, respectively. The proposed method had runtimes of 0.114s,
0.403s, and 0.078s, respectively. The networks were constructed
in Python using Numpy with no GPU on a desktop computer with
an Intel Xeon 2.6 GHz CPU. However, these speeds can be further
optimized with the use of GPUs and deep learning libraries.

5. CONCLUSION

In this paper, we proposed a novel method of optimizing the weights
within a convolutional filter of a CNN through the use of dynamic
programming. We implemented DTW as a method of sequence ele-
ment alignment between the weights of a filter and the inputs of the
corresponding receptive field. In this way, the weights of the convo-
lutional layer are aligned to maximize their relationship to the data
from the previous layer. Furthermore, we show that the proposed
model is able to tackle time series pattern recognition. We evaluated
the proposed model on a variety of datasets to reach state-of-the-art
results. This shows that the proposed method a viable feedforward
neural network model for time series recognition and an effective
method of optimizing the convolutional filter in CNNs. There is po-
tential for this work to be extended to any CNN-based model.
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