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ABSTRACT

Convolutional neural networks have achieved great success in
speech, image, and video signal processing tasks in recent years.
There have been several attempts to justify the convolutional
architecture and to generalize the convolution operation for
treatment of other data types such as graphs and manifolds. Based on
group representation theory and noncommutative harmonic analysis,
it has recently been shown that the so-called group equivariance
requirement of a feed-forward neural network necessitates the
convolutional architectures. In this paper, based on the familiar
concepts of linear time-invariant systems, we develop an elementary
proof of the same result. The nonlinear activation function, being
a necessary components of practical deep neural networks, has
been glossed over in previous analyses of the connection between
equivariance and convolution. We identify sufficient conditions for
the non-linear activation functions to preserve equivariance, and
hence the necessity of the group convolution structure. Our analysis
method is simple and intuitive, and holds the potential to be applied
to more challenging scenarios such as non-transitive domains and
multiple simultaneous equivariances.

Index Terms— group equivariance, convolutional neural
network, algebraic convolution, nonlinear activation function

1. INTRODUCTION

In classification problems, domain invariance, which refers to
the fact that the label is invariant to certain transformations of
the input features, is present in many problems such as image
classification and graph pattern recognition. Invariance is a special
case of equivariance which means that when the input feature is
transformed the output feature will transform in a similar way. In
implementations that rely on multi-layer neural networks, domain
invariance can be achieved by making every layer except the
last one equivariant, and adding invariance only in the last layer.
The equivariance property, which is present in networks such
as convolutional neural networks (CNN) [1], greatly reduces the
number of network parameters and as a result reduces chances of
overfitting. In CNN, domain invariance is achieved in two ways.
First, the convolution layer applies the same kernel to every part
of the image. As a result, it yields translation equivariance which
means when the input is translated, the output of a convolution layer
will be translated in the same way. Second, the pooling layer will
introduce local invariance. The receptive field increases as we reach
deeper layers, so that the pooling layer in the higher level actually
achieves global invariance. The good performance of CNN on image
and video related tasks have triggered the study of generalized
convolution networks [2, 3, 4, 5, 6] and alternatives in other tasks.

Several techniques can be used in deep neural networks to
achieve equivariance [7]. Data augmentation is a simple method to
inject soft or implicit constraints for equivariance [7]. It is a method
orthogonal to parameter sharing. The network will benefit from
data augmentation only if augmentation introduces transformation
that is not explained by parameter sharing. So data augmentation
generally requires more parameters than parameter sharing methods
[8]. Another popular method is adding symmetry regularization
to learn symmetry-adapted representations which are permutation
invariant [9]. New network architectures have been proposed
[10] which introduce new operations and combine the permuted
features to make a model equivariant to rotation. Furthermore, [11]
designed objective functions defined on sets which are invariant to
permutations.

Several previous works apply group action or harmonic analysis
to investigate equivariant neural networks [12, 13]. Steerable filters
are studied in [14] to achieve equivariance in deep networks [15].
Necessary and sufficient architecture for a neural network to be
equivariant to group actions has been explored in [8]. It is shown
that when the transformation group acts discretely on the input and
output of φw, a neural network layer φw is equivariant with respect
to the G actions if and only if G explains the symmetries of the
network parameter w [8]. Following that, it is proved in [16] that a
neural network N is equivariant to the action of a compact group
G if and only if N is a convolutional neural network that applies
the generalized convolution on group G. Although the proposed
framework is general and applicable to diverse transformations of
the input/output of the neural layers, the treatment of nonlinearities is
less than satisfactory. Specifically, the conditions on which nonlinear
activation functions will keep the equivariance of convolutional
layer have not been identified. Also, the proof for the necessary
part of the equivalence between equivariance and convolution uses
representation theory and noncommutative harmonic analysis, and is
highly technical. It is our hope to provide a more elementary proof
on the equivalence based on intuition obtained from familiar signal
processing concepts. We also consider the effect on the equivalence
of the nonlinearities and identify conditions on the nonlinearity that
preserve the equivalence.

Specifically, the contributions of this paper can be summarized
as follows:

i) Using intuition from linear time-invariant systems, we prove
that equivariance in a linear neural network layer is equivalent to the
layer being convolutional. The convolution kernel is the unit impulse
response of the layer.

ii) We present a careful analysis on the non-linear activation
functions. Specifically, we show that a sufficient condition on the
activation functions for the equivalence between equivariance and
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convolution is that the nonlinear activation function contain at least
one segment that is one-to-one.

The rest of the paper is organized as follows: Section 2
introduces the system model and the basic definitions. Section 3
provides a proof of the equivalence of group equivariance and
convolution operation for the shift-equivariant case and the more
general case where the group action is transitive. Section 4 completes
the analysis by identifying a sufficient condition for the nonlinear
activation to preserve equivariance. Section 5 discusses the case
of multi-layer networks and possible extensions of our analysis
to nontransitive group equivariance and multiple equivariances.
Finally, Section 6 concludes the paper.

2. SYSTEM MODEL AND DEFINITIONS

LetN be a feed-forward neural network withL+1 layers. We denote
the output features of the layers as x0,x1, . . . ,xL, where x0 is the
input of the entire neural network. For image processing, these are
the images signals in the layers. The sets indexing the neurons of
each layer are denoted as X0,X1, . . . ,XL, respectively. In the l-th
layer, the output xl is obtained by a map f̃l : xl−1 → xl

xl = f̃l(xl−1) = σ(wlxl−1 + bl)

where wl is a weight matrix/tensor, bl is the bias term and
σ(z) is a nonlinear element-wise operator which is also called the
activation function. This is a general definition for feed-forward
neural network. Convolutional neural network is a special case
where wl has a special toeplitz structure.

2.1. Group Action and Equivariance

Definition 1. Let G be a group, g ∈ G, X and Y be two index sets
with corresponding G-actions

Tg : X → X , T ′g : Y → Y (1)

that satisfy Tg2g1 = Tg2 ◦ Tg1 and T ′g2g1 = T ′g2 ◦ T
′
g1 . Let L(U , F )

denote the vector space over a field F with vectors indexed by U .
A vector x ∈ L(U , F ) can be viewed as a mapping from U to F ,
such that x(u) ∈ F , for u ∈ U . For brevity, we may write L(U)
instead when the results hold for any specific F . We use ◦ to denote
mapping composition, such that T◦f(u) = [Tf ](u). Let x ∈ L(X )
and y ∈ L(Y). The transformations Tg and T ′g induces actions Tg

and T′g on L(X ) and L(Y) through

Tg ◦ x(ux) = x(Tgux), T′g ◦ y(uy) = y(T ′guy). (2)

We say that a map f : L(X )→ L(Y) is equivariant with the action
of G (or G-equivariant) if

T′g ◦ f ◦ x = f ◦Tg ◦ x, ∀g ∈ G. (3)

Definition 2. Let N be a feed-forward neural network. Let the
feature of l-th layer be xl = σ ◦ fl ◦ xl−1, l = 0, 1, . . . , L.
And let G be a group that acts on each index space X0, . . . ,XL.
Let T0, . . . ,TL be the corresponding actions on the features
x0, . . . ,xL lying in L(X0), L(X1), . . . , L(XL), respectively. We
say that N is a G-equivariant feed-forward neural network if,
when the inputs are transformed x0 → T0

gx0 (for any g ∈ G),
the activation of other layers transform correspondingly as xl →
Tl
gxl, l = 0, 1, . . . , L.

2.2. Generalized Group Convolution

Generalized group convolution was considered in [16] to build the
correspondence between group equivariance and the convolution
architecture. We adopt the same set of definitions as follows.

Definition 3. Let G be a compact group and f and g two functions
G→ C, then the generalized convolution of f and g is defined as:

(f ∗ g)(u) =

∫
G

f(uv−1)g(v)dµ(v), (4)

where uv−1 is a group action. And µ(v) is the Haar measure. The
discrete counterpart of (4) for countable groups is

(f ∗ g)(u) =
∑
v∈G

f(uv−1)g(v). (5)

In neural network, a major challenge is that the index sets
X0, . . . ,XL are usually not isomorphic to G. Then the analysis in
Theorem 1 (see Section 3.1) for linear time-invariant (LTI) system
can not apply directly. However, we can adapt the proof and obtain
a similar result as long as G acts on the index sets transitively. We
say that G acts transitively on X if for any ux, u

′
x ∈ X , there exists

a g ∈ G such that u′x = Tg(ux).

If G acts on X transitively, X is a homogeneous space of G.
Take any x0 ∈ X , the set of group elements that map x0 to itself
form a subgroup H of G. And the set of group elements that map
x0 to x′ is a left coset gH := {gh|h ∈ H}.We say G/H is a
left quotient space. There is a one-to-one mapping between X and
G/H . We represent it through an isomorphism ψ : X −→ G/H ,
denoting as X ' G/H . The projection of a function from G to its
homogeneous space X is defined as mapping the average function
value in the left coset gH to the corresponding x = ψ−1(gH).
Lifting from X ' G/H to G is get by setting all the function
value of elements in left coset equal to the function value of the coset
representation in X . Formally,

Definition 4. Given f : G → C, we define its projection to X =
G/H as

f ↓X : X → C, f ↓X (x) =
1

|H|
∑
g∈x̄H

f(g), (6)

where x̄ is a representative element of ψ(x) = x̄H . Conversely,
given f : X → C, we define the lifting of f to G as

f ↑G: G→ C, f ↑G (g) = f(x) (7)

where x = ψ−1(gH).

Projection and lifting to/from right quotient spaces and double
quotient spaces are defined analogously. With the definition of lifting
from quotient space to G we then define convolution on quotient
space.

Definition 5. Let G be a finite or countable group, X and Y be (left
or right) quotient space of G, f : X → C and g : Y → C we then
define the convolution of f and g as

(f ∗ g)(u) =
∑
v∈G

f ↑G (uv−1)g ↑G (v) (8)

=
∑
v∈G

f ↑G (v)g ↑G (v−1u), u ∈ G. (9)

With these definitions, we are ready to state and provide an
elementary proof the main theorem of [16] when the index sets are
quotient space of G.
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3. EQUIVARIANCE AND GENERALIZED CONVOLUTION

3.1. Translation Equivariance and Traditional Convolution

We will first provide a proof of the equivalence of translation
equivariance and traditional convolution to illustrate the main proof
ideas we use in our paper. The main idea of proof is the same as
showing that convolution is the necessary and sufficient operation
for a LTI system in signal processing [17].

Definition 6. Given a linear mapping f : L(Xx) → L(Xy), where
Xx = Xy = Z2. Let Tv denote the translation operator such that

Tvx(u) := x(u+ v). (10)

We say the mapping f : L(Xx)→ L(Xy) is translation equivariant
if

Tv ◦ f ◦ x = f ◦Tv ◦ x, ∀v ∈ Z2. (11)

Theorem 1. A linear mapping f : L(Xx) → L(Xy) is translation
equivariant if and only if it implements a convolution

f ◦ x(u) = (x ∗ h)(u) =
∑
v∈Z2

x(v)h(u− v) (12)

where h is the convolution kernel.

Proof. The sufficient part is straight forward which can be shown as
follows. For any u0 ∈ Z2,

Tu0 ◦ f ◦ x(u) = f ◦ x(u+ u0)

=
∑
v∈Z2

x(v)h(u+ u0 − v)

=
∑
v′∈Z2

x(v′ + u0)h(u− v′) = f ◦Tu0 ◦ x(u)

To prove the necessary part, we first define the unit-impulse input:

δ(u) =

{
1 if u = (0, 0),

0 otherwise
, (13)

then the kernel h is chosen as impulse response h(u) = f◦δ(u), and
h(u−v) = T−v◦f ◦δ(u) = f ◦T−v◦δ(u) due to the equivariance.
And the input x(u) can be represented as a convolution as follows:

x(u) =
∑
v∈Z2

T−v ◦ δ(u)x(v) =
∑
v∈Z2

x(v)δ(u− v). (14)

So the operator x =
∑
v∈Z2 x(v)T−v ◦ δ.

y(u) = f ◦ x(u) = (f ◦
∑
v∈Z2

x(v)T−v ◦ δ)(u) (15)

=
∑
v∈Z2

x(v)f ◦T−v ◦ δ(u)

=
∑
v∈Z2

x(v)T−v ◦ f ◦ δ(u)

=
∑
v∈Z2

x(v)h(u− v)

= (x ∗ h)(u)

To generalize Theorem 1 to any other group action equivariance
when the index sets are isomorphic to G, we just need to change
the translation operation to the group operation of G with small
adjustment.

3.2. Equivalence in Transitive Case

In this subsection, we will analyze the necessary and sufficient
condition for a linear mapping to be G-equivariant when the input
index set and output index set are isomorphic to quotient space of
G . As we usually have discrete index set in real application, all of
the analysis in this section are based on discrete index sets and when
G is a countable group for simplicity. Generalization to continuous
case is possible. Also we identify the index set with the appropriate
quotient group of G for brevity.

Theorem 2. Let G be a compact group and X = G/Hx and Y =
G/Hy be two sets with corresponding G-actions

Tg : X → X , T ′g : Y → Y. (16)

A linear mapping f : L(X ) → L(Y) is G-equivariant if and
only if it is a generalized convolution on quotient space defined in
Definition 5. In particular,

f ◦ x(u) = (x ∗ h)(u) =
∑
v∈G

x ↑G (v)h ↑G (v−1u), u ∈ Y.

Proof. The sufficient part is straight forward and similar to the proof
of Theorem 1. If f is a convolution defined as Definition 5, for any
u ∈ Y ,

T′g ◦ f ◦ x(u) = (f ◦ x)(T ′gu)

=
∑
v∈G

x ↑G (v)h ↑G (v−1(T ′gu))

=
∑
v∈G

x ↑G (v)h ↑G (v−1gu)

=
∑
v′∈G

x ↑G (Tgv
′)h ↑G (v′−1u)

= f ◦Tg ◦ x(u).

Then we will provide proof for necessary part. Let δ(u) denote
the unit-impulse function. Define a kernel h as the unit-impulse
response h(u) = f ◦ δ(u). We have

h(vu) = Tv ◦ h(u) = Tv ◦ f ◦ δ(u) = f ◦Tv ◦ δ(u) (17)

thanks to the equivariance. The input x ↑G (u) can be represented
as a convolution as follows:

x ↑G (u) =
∑
v∈G

x ↑G (v)δ ↑G (v−1u)

=
∑
v∈G

x ↑G (v)Tv−1 ◦ δ ↑G (u).

Then we have x ↑G=
∑
v∈G x ↑G (v)Tv−1 ◦ δ ↑G.

Before proving the main theorem, we first show several useful
property of lifting and function composition. First, for u ∈ Xy

(f ↑G ◦x ↑G)(u) = (f ◦ (x ↑G) ↓X )(u) = (f ◦ x)(u).

Second, since h ↑G (u) = f ↑G ◦δ ↑G (u), we have

h ↑G (v−1u) = Tv−1 ◦ f ↑G ◦δ ↑G (u)

= f ↑G ◦Tv−1 ◦ δ ↑G (u).
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Next, we will prove the necessary part using similar ideas as used in
Theorem 1.

(f ◦ x)(u) = (f ↑G ◦x ↑G)(u)

= f ↑G ◦
∑
v∈G

x ↑G (v)Tv−1 ◦ δ ↑G (u)

=
∑
v∈G

x ↑G (v)f ↑G ◦Tv−1 ◦ δ ↑G (u)

=
∑
v∈G

x ↑G (v)T′v−1 ◦ f ↑G ◦δ ↑G (u)

=
∑
v∈G

x ↑G (v)h ↑G (v−1u) = (x ∗ h)(u)

Theorem 2 recovers the main theorem of [16], without resorting
to group representation theory and harmonic analysis results. Our
proof shows that the convolutional kernel h is the impulse response
of the convolutional layer.

4. NONLINEAR ACTIVATION FUNCTION

We have obtained the necessary and sufficient condition for a linear
mapping to be G-equivariant in last section. To extend it to a neural
network layer, we need to include nonlinear activation function
and explore the G-equivariant transitive property when we have a
nonlinear function after a linear mapping. The following lemma
will identify conditions under which G-equivariance with nonlinear
activation is equivalent to G-equivariance without nonlinear
activation.

Lemma 1. Consider a nonlinear activation function (pointwise
operator) σ : C → C and a linear mapping f : L(X ) → L(Y).
The set C can be R or C, for example. If there exists a ball S :=
Bε(y0) = {||y − y0|| ≤ ε}, ε > 0 in C such that σ forms an
injection from S to C, then σ ◦ f is G-equivariant if and only if f is
G-equivariant.

Proof. The sufficient part is trivial. As σ is a pointwise operator, the
equivariance of f leads to the equivariance of σ ◦ f .
For the reverse direction, take Sy = {y|y(uy) ∈ S,∀uy ∈ Y},
σ(Sy) = {σ ◦ y|y ∈ Sy}, f−1(Sy) = {x|f ◦ x ∈ Sy}. Then σ
is a bijection (one to one mapping) from Sy to σ(Sy) and f−1(Sy)
forms a set that has non-zero volume in L(X ).
Denote T′g as the transformation operator on σ ◦ f which is also a
transformation operator on f since σ is a pointwise operator. And we
denote Tg as transformation operator on x. We will first show that
σ ◦ f is G-equivariant lead to f to be G-equivariant on f−1(Sy).
Then we will extend it to that f is G-equivariant on the whole
domain.
As the transformations are defined on the whole domain, we need
to show that Sy and σ(Sy) are closed on the transformation of
T′g, ∀g ∈ G and f−1(Sy) is closed on the transformation of
Tg, ∀g ∈ G. The first part is true by the definition of Sy so we
just need show the second part.
Take any x ∈ f−1(Sy), then f ◦x ∈ Sy and σ ◦ f ◦x ∈ σ(Sy). By
the definition of Sy , T′g ◦ f ◦x ∈ Sy, ∀g ∈ G. So σ ◦T′g ◦ f ◦x =
T′g ◦ σ ◦ f ◦ x ∈ σ(Sy), ∀g ∈ G. As σ ◦ f is G-equivariant,
T′g ◦σ ◦ f ◦x = σ ◦ f ◦Tg ◦x, so f ◦Tg ◦x ∈ Sy, ∀g ∈ G. And
Tg ◦ x ∈ Sx, ∀g ∈ G. That is, take any x ∈ f−1(Sy), we have
Tg ◦ x ∈ Sx, ∀g ∈ G.

Since σ ◦ f is G-equivariant, then take any x ∈ f−1(Sy)

T′g ◦ σ ◦ f ◦ x = σ ◦ f ◦Tg ◦ x = σ ◦T′g ◦ f ◦ x.

So T′g ◦ f ◦ x = f ◦ Tg ◦ x ∀g ∈ G,∀x ∈ f−1(Sy) as σ is a
bijection from Sy to σ(Sy).
We can then extend the result to the whole domain. For any x ∈
L(X ) there exists a constant r satisfying |r| > 0 such that x = rx′

and x′ ∈ f−1(Sy) as f−1(Sy) has non-zero volume. Because f is a
linear mapping, we have Tg ◦f ◦x = rTg ◦f ◦x′ and f ◦Tg ◦x =
rf ◦ Tg ◦ x′. It follows from Tg ◦ f ◦ x′ = f ◦ Tg ◦ x′,that
Tg ◦ f ◦ x = f ◦ Tg ◦ x, ∀x ∈ L(X ). Thus f is necessarily
G-equivariant in the whole space when σ ◦ f is G-equivariant.

Remark 1. With Lemma1, we can see that almost all popular
activation functions satisfy the condition in Lemma1; one exception
being the step-function activation. As a result, these nonlinear
activation functions can inherit the G-equivariance from linear
mapping as well as passing theG-equivariance to the linear mapping
which they operate on. The unit-step function does not satisfy the
condition because there is no neighborhood of non-zero volume in
the domain that is injection mapped to R. Rectified Linear Unit
(ReLU) x+ := max(x, 0) maps [0, 1] to [0, 1] one-to-one. Sigmoid
function σ(x) = 1

1+e−x also injectively maps [0, 1] to R.

5. GROUP EQUIVARIANT NEURAL NETWORK

It is difficult to give a necessary and sufficient condition for a
neural network to be G-equivariant as a single system. It is obvious
that if each layer of a deep neural network is equivariant, then the
whole network is equivariant. However, the converse is not true:
it is possible for the whole network to be equivariant, whereas the
layers are not equivariant. We omit the counter example here but
only remark that it is possible to permute the neurons in the hidden
layers, together with all the connection coefficients without altering
the end-to-end mapping of the whole network.

Practical convolutional neural networks are G-equivariant
layer-wise, if each layer contains only one feature map. However,
most convolutional neural networks contain multiple feature maps in
each hidden layer, in which case our results (and existing results in
the literature) do not apply directly because the group actions are not
transitive: the shift operation does not map an index in one feature
map (i.e., “channel”) to an index of a different feature map. Rotation
action, which acts only transitively on the sub-domain of concentric
circles is also non-transitive. It is possible to extend our result to
these non-transitive cases (see our coming work[18]).

6. CONCLUSIONS

Our work provides an elementary analysis of group equivariance in
neural network. We showed that a necessary and sufficient condition
for neural network to be G-equivariant when G acts transitively on
the index sets of neural network function is that the layer implements
a group convolution. The proof method is elementary, relying on
familiar concepts of linear time-invariant systems. Our analysis is
complete with the analysis of the nonlinear activation function. We
identified a sufficient condition for the nonlinear function to preserve
equivariance. Our analysis method is intuitive and can be extended
to deal with cases where the group actions are non-transitive, and
where there are multiple equivariances.
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