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ABSTRACT

Recently, by employing the stacked extreme learning ma-
chine (ELM) based autoencoders (ELM-AE) and sparse AEs
(SAE), multilayer ELM (ML-ELM) and hierarchical ELM
(H-ELM) has been developed. Compared to the conventional
stacked AEs, the ML-ELM and H-ELM usually achieve bet-
ter generalization performance with a significantly reduced
training time. However, the ℓ1-norm based SAE may suffer
the overfitting problem and it is unable to provide analytical
solution leading to long training time for big data. To al-
leviate these deficiencies, we propose an enhanced H-ELM
(EH-ELM) with a novel random sparse matrix based AE (S-
MA) in this paper. The contributions are in two aspects, 1)
utilizing the random sparse matrix, the sparse features can
be obtained; 2) the proposed SMA can provide an analytical
solution so that the high computational complexity issue in
SAE can be addressed. Experimental results on benchmark
datasets show that the proposed EH-ELM achieves a higher
recognition rate and a faster training speed than H-ELM and
ML-ELM.

Index Terms— Extreme learning machine, Autoencoder,
Multilayer perceptron, Random sparse matrix.

1. INTRODUCTION

Feature extraction is vital to data processing as discrimina-
tive features help in performance enhancement and computa-
tional complexity reduction. As a direct and efficient feature
extraction method, stacked autoencoders (AEs) have been de-
veloped for representation learning and widely used in deep
neural networks (DNNs) [13]. The stacked AEs aim to map
inputs to outputs with least possible amount of distortions and
learn the data representation by setting the desired outputs as
the inputs. However, existing stacked AEs in DNNs usually
need a long training time due to the slow convergence of the
gradient descent based training methods [13–15].
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Recently, the popular extreme learning machine (ELM)
[4–12] based AE has been developed in [1, 2] to achieve a fast
feature learning. A multilayer ELM (ML-ELM) that stacks
several AE layers has been investigated in [1]. ML-ELM has
shown better generalization performance with a lower compu-
tational complexity than many DNNs [13–15]. But it is point-
ed out in [2] that the extracted features in ML-ELM tend to be
dense in some applications, which may lead to indistinctive
representation of important information of data. Moreover,
the simply stacked AEs in ML-ELM may not well exploit the
advantage of random feature mapping in ELM. To overcome
these shortcomings, a hierarchical ELM (H-ELM) with the
ℓ1-norm based sparse AE (SAE) has been developed [2].

However, the ℓ1-norm based SAE is unable to provide an-
alytical solution, leading to long training time for big data.
It may also suffer the overfitting problem. To address these
deficiencies, an enhanced H-ELM (EH-ELM) with a novel
random sparse matrix based AE (SMA) is developed in this
paper. The contributions are summarized as follows, 1) uti-
lizing the random sparse matrix, the sparse features can be
obtained; 2) benefiting from using random sparse matrix, the
ℓ2-norm regularized optimization is formulated in the SMA.
The resultant solution can be analytically calculated; 3) by
virtue of the SMA, the proposed EH-ELM learns faster than
ML-ELM and H-ELM, especially for high-dimensional and
large data processing.

Organizations of the rest paper are as follow. Section II
gives a brief review on ELM, ELM-SAE and H-ELM. Section
III presents the proposed method and Section IV shows the
experimental results.

2. REVIEW ON ELM, ELM-SAE AND H-ELM

2.1. ELM, ELM-AE and ELM-SAE

ELM was developed for a single hidden layer feedforward
neural network (SLFN) and states that the input weight W
and bias b can be randomly generated. The training thus be-
comes solving a linear least-squares (LS) problem [4]. Given
a training set

{
(xi, ti) |xi ∈ Rd, ti ∈ Rm, i = 1, 2, . . . , N

}
and (WL×d,bL×1), where xi is the input vector, ti is the
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Fig. 1. The architecture of H-ELM.

desired output and L is the number of hidden neurons, the
aim of ELM is to minimize the training error as

min
β

∥Hβ −T∥22 , (1)

where HN×L = g(WX + b · 1T )T is the hidden-layer out-
put matrix, 1 is an all-one vector of dimension N , X =
[x1 x2 · · · xN ] is the input matrix, T = [t1 · · · tN ]T is
the desired output matrix, and g(•) is the activation function.
Then, the output weight βL×M is calculated by

β = H†T, (2)

where H† is the Moore-Penrose generalized inverse of H.
Different from the conventional ELM, ELM-AE uses the

input X as the desired output and the hidden neurons are
learnt to represent the input data. In addition, the ℓ2-norm
regularized ELM-AE with orthogonal hidden node parame-
ters are utilized in [1]. The network is trained by the mini-
mization problem

min 1
2C

∥∥HβA −XT
∥∥2
2
+ 1

2 ∥βA∥
2
2 ,

s.t.WTW = I,bTb = I.
(3)

where C is the regularization parameter. The encoded output
can be obtained by

Y = g (βAX) , (4)

To address the issue of dense feature in ML-ELM [1],
Tang et al. [2] proposed the ELM-SAE by imposing the ℓ1-
norm constraint on the output weight βS to achieve the sparse
encoded features as

min
∥∥HβS −XT

∥∥2
2
+ ∥βS∥1. (5)

A fast iterative shrinkage-thresholding algorithm (FISTA) has
been adopted to solve βS .

2.2. H-ELM

H-ELM consists of two independent components: a feature
extraction with stacked AEs and a classification layers with
ELM, as shown in Fig. 1. Assume K SAE layers are used

and Y(k−1) is the output of (k − 1)-th layer with Y(0) = X,
the output Y(k) of k-th layer is

Y(k) = g
(
β
(k)
S Y(k−1)

)
, k = 1, · · · ,K, (6)

where β
(k)
S is the output weight of the k-th SAE. The super-

vised ELM classifier in the last layer is trained as

min
∥∥∥g(WY(K) + b · 1T )Tβ −T

∥∥∥2
2
, (7)

where W and b are the randomly generated weight and bias,
and β is the output weight matrix.

3. THE PROPOSED EH-ELM

The ℓ1-norm based SAE may suffer the overfitting problem
and it takes long training time for high-dimensional and large
data. To alleviate these deficiencies, a novel SMA is first pro-
posed to obtain the sparse features with analytical solution.
Then, the EH-ELM is developed by employing the H-ELM
learning framework with the ℓ1-norm based SAE replaced by
the proposed SMA.

3.1. SMA

In [17], a random matrix based projection is developed based
on the Johnson-Lindenstrauss (JL) lemma, which states that
after projection, the distance of any pair of two vectors can
be preserved within an arbitrarily small tolerance. Random
projection has been widely used for dimension reduction and
the random sparse matrix R can be generated with a simple
distribution as [17]

rij =


+
√
3 with probability 1/6

0 with probability 2/3

−
√
3 with probability 1/6

(8)

where rij denotes the element in the random sparse matrix
R. The random projection based on (8) is also known as the
sparse JL transform. The random sparse matrix not only pre-
serves the pairwise distance, but also introduces sparsity. To
further exploit the advantage of ELM on using random hid-
den parameters, we propose two new schemes for generation
of the weight matrix W = [wij ] as follows:

Scheme 1 wij =

{
0 with probability 2/3,

U(−1, 1) with probability 1/3,
(9)

Scheme 2 wij =

{
0 with probability 2/3,

N(−1, 1) with probability 1/3,
(10)

where U(·) and N(·) are the Uniform and Gaussian distribu-
tions, respectively.
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By virtue of the above described sparse random weight
matrix, we proposed a random sparse matrix based AE (SMA)
in this paper. The SMA generates the hidden-layer weight
WM and bM according to (9) or (10) and solves the output-
layer weight βM by the following ℓ2-regularized nonlinear
ELM-AE

min
1

2
C
∥∥HMβM −XT

∥∥2
2
+

1

2
∥βM∥22 (11)

with
HM = g(WMX+ bM1T )T , (12)

where 1 is an all-one vector of dimension N . The solution to
problem (11) can be obtained as

βM = HT
M

(
I
C +HMHT

M

)−1
XT if N < L,

βM =
(

I
C +HT

MHM

)−1
HT

MXT if N ≥ L.
(13)

The encoded result can be derived as

Y = g (βMX) . (14)

Fig. 2. Sparsity comparison among different sparse AEs.

To validate the effectiveness of the proposed SMA, an
experiment is conducted to compare the sparsity of the pro-
posed SMA and the existing ℓ1-norm based SAE [2]. Both
the Uniform distribution in (9) and the Gaussian distribution
in (10) are tested to generate the random sparse matrix. The
corresponding SMAs are denoted as SMAU and SMAG, re-
spectively. The real-world NORB dataset [2] with 2048 fea-
tures per sample is used. The criterion ms = (

√
card(β) −

∥β∥1/∥β∥2)(
√

card(β) − 1)−1 (card(β) is the number of
elements in β) is employed for the sparsity evaluation of the
output weight. Different numbers of hidden nodes of the
AE ranging from 100 to 3000 are tested. For each number
of hidden nodes, multiple trials are conducted and the av-
erage sparsity is calculated for comparisons. Fig. 2 shows
the curves of sparsity obtained by the proposed SMA and the
existing SAE [2]. It is evident that the proposed SMA with
both random sparse matrix generating methods is effective in
sparse encoding.

3.2. EH-ELM

By incorporating the H-ELM learning framework with the S-
MA described above, an EH-ELM is developed. Algorithm

1 shows the pseudo codes of the EH-ELM. We first use the
stacked SMAs to conduct the feature extraction. Then, the
regularized ELM (RELM) is utilized for classification in the
last layer. To achieve a good generalization performace, the
orthogonal random input weights and bias are used as sug-
gested in [1], i.e., WTW=I and bTb=1. The output weight
β in the last hidden layer is computed by

β = HT
(

I
C +HHT

)−1
T if N < L

β =
(

I
C +HTH

)−1
HTT if N ≥ L

, (15)

where T is the desired output matrix of training data.

Algorithm 1 EH-ELM
Given:
Input data matrix X, the regularization parameter and the
number of hidden nodes

(
C(k), L(k)

)
, k = 1, · · · ,K, the ac-

tivation function g(•).
Training stage:

1. for k = 1 : K

(a) Generate the random sparse input weight matrix
W

(k)
M and bias b(k) with (9) or (10)

(b) Compute the hidden layer output matrix H
(k)
M

with (12) and the output weight β(k)
M with (13)

(c) Derive the encoded result Y(k) with (14)

2. Generate the orthogonal random matrix W and bias b.
3. Compute the output weight β by (15).

Testing stage:
Given:
A testing input data xp

1. for k = 1 : K,
y
(k)
p = g

(
β
(k)
M y

(k−1)
p

)
2. Compute the output by

op = g
(
Wy

(K)
p + b

)T

β

4. EXPERIMENTS AND COMPARISONS

Experiments and comparisons among ML-ELM [1], H-ELM1

[2] and the proposed EH-ELM are given in this section. In the
experiments, both the random sparse matrices generated by
the Uniform and Gaussian distributions are tested in SMA.
The corresponding EH-ELMs are denoted as EH-ELMU and
EH-ELMG, respectively. Experiments are conducted on 12
high-dimensional and 11 low-dimensional benchmark classi-
fication datasets2 specified in Tabel 1, as well as the MNIST
and NORB datasets used in [2]. All algorithms are imple-
mented with MATLAB codes on a computer with a 3.2GHz

1Codes available at http://www.ntu.edu.sg/home/egbhuang/elm
codes.html

2http://www.ics.uci.edu/ mlearn/MLRepository.html
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i5 CPU and 8GB RAM, except when applied to the MNIST
and NORB datasets, the computer has a 3.4GHz i7 CPU and
32GB RAM.

For all three algorithms, three hidden layers are used,
where ML-ELM consists of three AE layers and H-ELM and
EH-ELM consist of two AE layers and one classifier layer.
The parameter optimization is conducted by grid searches on
{100, 500, 700, 1000, 5000, 12000, 15000} for the hidden-
layer node numbers and on {10−5, 10−3, 103, 105} for the
regularization factors. Average results on 10 independent
trials are reported.

Table 1. Specifications of benchmark datasets.
Dataset Train Data Test Data Features

ALLAML 43 29 7129
arcene 120 80 10000

Carcinom 105 69 9182
COIL20 860 580 1024
gisette 4200 2800 5000

GLIOMA 29 21 4434
HistALL 3326 830 4600
ORL64 240 160 4096
PCMAC 1166 777 3289
TOX171 102 69 5748
Yale64 105 60 4096

YaleB32 1436 978 1024
BreastTissue 75 31 9

bupa 200 145 6
mfeatall 1200 800 649

Cardiotocography 1701 425 21
diabetes2 576 192 8

randomfaces4ar 2100 500 540
Diabetic 806 345 19

randomAR 1800 800 540
magic 10000 9020 10
pcaAR 700 700 300
wine 100 78 13

4.1. Evaluation on high-dimensional datasets

Tables 2 shows the recognition rates and training time of ML-
ELM, H-ELM and the proposed EH-ELM. As highlighted in
boldface, EH-ELM obtains higher recognition rate with lower
training time than ML-ELM and H-ELM on all 12 datasets.
Since EH-ELMU and EH-ELMG cost close training time, we
do not list the training time of EH-ELMG in Table 2. It is
noteworthy that, for ALLAML, arcene, GLIOMA, HistAL-
L, YaleB32, EH-ELMU offers more than 13.1%, 5%, 8.57%,
3.73%, 13.93% increments on the recognition rate over H-
ELM. Meanwhile, it is also found that the EH-ELMU per-
forms slightly better than EH-ELMG for most datasets.

4.2. Evaluation on low-dimensional datasets

Experiment results on the 11 low-dimensional datasets are
shown in Table 3. As highlighted in Table 3, EH-ELM has
better recognition performance than ML-ELM and H-ELM
for all low-dimensional datasets. EH-ELMU achieves a close
accuracy to EH-ELMG. In addition, the proposed EH-ELM
learns faster than ML-ELM and H-ELM.

Table 2. Recognition rates (%) and training time (s) compar-
isons on high-dimensional datasets.

Dataset ML-ELM [1] H-ELM [2] EH-ELMU EH-ELMG

Rate Train time Rate Train time Rate Train time Rate

ALLAML 89.66 21.33 83.45 16.45 96.55 10.87 96.55
arcene 82.5 21.46 80.5 18.80 85.5 11.32 85.5

Carcinom 91.3 21.40 94.78 18.18 95.36 11.09 95.07
COIL20 99.59 22.83 97.38 12.33 99.66 11.29 98.97
gisette 96.27 32.93 95.72 21.11 96.66 19.49 96.89

GLIOMA 62.86 21 62.86 14.27 71.43 10.43 66.67
HistALL 88.1 30.74 89.45 19.61 93.18 17.41 93.25
ORL64 89.88 21.10 96.88 14.09 97.5 10.69 96.75
PCMAC 74.13 23.79 83.55 14.79 84.94 12.59 84.07
TOX171 74.2 20.84 81.16 15.23 82.61 10.68 82.61
Yale64 78.33 20.70 87.33 13.98 88.33 10.49 88.33

YaleB32 93.66 24.03 84.11 12.99 98.04 12.26 98.06

Table 3. Recognition rates (%) and training time (s) compar-
isons on low-dimensional datasets.

Dataset ML-ELM [1] H-ELM [2] EH-ELMU EH-ELMG

Rate Train time Rate Train time Rate Train time Rate

BreastTissue 61.29 20.22 51.61 10.59 80.65 9.96 74.19
bupa 66.90 0.005 65.38 0.003 71.59 0.003 72.28

mfeatall 98.65 23.62 98.07 12.47 99.15 11.72 99.1
Cardiotocography 84.33 24.75 88.85 12.60 91.34 12.26 90.31

diabetes2 64.06 0.05 69.48 0.02 70.31 0.02 67.4
randomfaces4ar 94.88 25.81 94.8 13.58 98.92 13.04 98.8

Diabetic 68.75 0.12 66.72 0.06 72.41 0.07 73.16
randomAR 78.35 25.33 84.45 13.31 89.5 12.72 89.93

magic 85.85 0.33 84.28 0.19 85.98 0.20 86.17
pcaAR 86.29 21.85 91.43 11.42 92.49 10.92 92.23
wine 97.69 20.31 97.44 10.53 100 10.04 98.72

4.3. Evaluation on MNIST and NORB datasets

Following [2], experiments on two complicated datasets, M-
NIST and NORB, are carried out in this section to vertify the
superiority of EH-ELM. Table 4 shows the experimental re-
sults. It is obvious that EH-ELM wins the best recognition
rate among all algorithms, and EH-ELM learns faster than
ML-ELM and H-ELM. Especially, the training time by EH-
ELM on the MNIST dataset is only about 30% and 80% of
that by ML-ELM and H-ELM, respectively.

Table 4. Comparisons on MNIST and NORB datasets
Dataset ML-ELM [1] H-ELM [2] EH-ELMU EH-ELMG

Rate Train time Rate Train time Rate Train time Rate

MNIST 99.00 281.71 98.99 101.39 99.01 78.23 99.00
NORB 88.27 251.59 90.65 165.72 91.80 150.34 91.77

5. CONCLUSIONS

Instead of using the ℓ1-norm optimization based sparse AE, a
novel random sparse matrix based AE (SMA) has been pro-
posed in this paper. The proposed SMA is able to provide
analytical solutions for the sparse feature encoding thereby
learns faster than conventional AEs, which makes it more ap-
plicable for big data. Then, an enhanced hierarchical extreme
learning machine algorithm (EH-ELM) has been developed
by stacking the SMAS. Experimental results have been pre-
sented to verify the superiorities of the proposed EH-ELM
algorithm.
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