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ABSTRACT
Convolutional neural network (CNN) can be applied

in glaucoma detection for achieving good performance.

However, its performance depends on the availability of

a large number of the labelled samples for its training

phase. To solve this problem, this paper present a semi-

supervised transfer learning CNN model for automatic

glaucoma detection based on both labeled and unlabeled

data. First, a pre-trained CNN from non-medical data

is fine-tuned and trained in a supervised fashion using

the labeled data. The self-learning approach is then used

to predict the labels for the unlabeled data and utilize it

for training. The experimental results on the RIM-ONE

database demonstrate the effectiveness of the proposed

algorithm despite the lack of initial labeled samples.

Index Terms— Semi-supervised, glaucoma detec-

tion, convolutional neural networks, feature learning.

1. INTRODUCTION

Glaucoma is one of the leading causes of permanent

blindness in the world. It is a chronic eye disease caused

by retinal changes, specifically in the area of the optic

nerve head (ONH) [1]. Therefore, an automated screen-

ing program for glaucoma detection is urgently required

to facilitate the early detection of the disease, which is

critical to prevent its progression. Modern fundus cam-

eras with improved technology produce high-quality im-

ages with reliable information about diagnostically im-

portant retinal structures. Because of that, researchers fo-

cus their research on analysing fundus images. One of the

important indicators for glaucoma in the fundus images

is the size of the optic cup (OC) with respect to the op-

tic disc (OD). Therefore, multiple parameters have been

estimated by the previous works to detect glaucoma from

images, such as the vertical cup to disc ratio (CDR)[2].

However, the clinical diagnosing by annotating the cup

and disc manually from each image is labor-intensive and

also time-consuming.

Convolutional Neural Network (CNN) models have

been successfully utilized in many computer vision appli-

cations such as classification and semantic segmentation.

These models have the ability to learn the deep features of

the input without pre-processing steps such as segmenta-

tion. However, constructing these models to achieve de-

sirable results is restricted by the availability of large and

annotated training sets. An alternative solution the inten-

sive and expensive training process, many works have re-

cently presented based on off-the-shelf CNNs to address

different problems from those for which they were ini-

tially trained [3]. These CNNs were originally trained

using extremely large dataset from a different domain and

then transferred to extract discriminative features from a

different domain. However, adopting a classifier to new

domains requires a large dataset to avoid overfitting, a

setting that cannot be accomplished with current publicly

available sets for glaucoma detection. To address this

problem, both supervised and unsupervised learning can

be used simultaneously with labeled and unlabeled data.

This approach achieved a good performance in previous

computer vision tasks.

This paper proposes a simpler method of training neu-

ral networks in a semi-supervised fashion. The proposed

network consists of two stages. The first stag is the

transfer learning that involves using a pre-trained CNN

in the context of glaucoma detection with limited-size

labeled dataset. The second stage is the self-learning

that involves increasing the training set and thus the per-

formance of the pre-trained CNN, using the unlabeled

dataset. The self-learning method predicts the labels,

which are known as pseudo-Labels, for the unlabeled

samples by choosing the class which has the maximum

predicted probability and consider them as if they were

true labels. In principle, this framework can combine

almost all neural network models and training methods.

In our experiments, combining the transfer learning for

the labeled data and self-learning for the unlabeled data

present promising results for glaucoma detection.
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2. RELATED WORK

The lack of large dataset of labeled retinal images limits

the use of supervised learning for the diagnosis of these

images. To deal with this issue, few studies used semi-

supervised learning [4] and transfer learning [5]. Ma-

hapatra [4] developed an OD segmentation framework

by combining manual annotations with semi-supervised

learning. Bechar et al.[6] proposed a semi-supervised

learning method for OD and OC segmentation based on

color features, spatial information and manual annotation

of the image’s pixels. However, to the best of our knowl-

edge, there are no studies in the literature for glaucoma

detection using semi-supervised deep learning.

CNN and transfer learning have been achieved

promising results in various eye diseases, other than glau-

coma, such as diabetic retinopathy (DR) [7, 8]. This is

caused by the availability of the annotated data for the

DR but not for the other diseases. In transfer learning,

the pre-trained network is fed with the new images, re-

trieving the outputs of the fully connected layer as fea-

ture vectors, and using them to train a new classifier ex-

plicitly devoted to the new task. If the new dataset is

different from the original one, then fine-tuning of the

weights of the pre-trained network is required. In the

glaucoma detection literature, Orlando et al.[3] used two

different pre-trained CNN models (OverFeat and VGG-

S) as feature extraction and combined with regularized

logistic regression models. Experiments were performed

on two public datasets, which were annotated manually

for the glaucoma detection. Al-Bander et al.[9] proposed

an automated system to detect glaucoma in retinal fundus

images. They used a pre-trained CNN model (Alexnet)

as a feature extractor fed into support vector machine

(SVM) for classification. Cerentini et al.[19] used two

pre-trained models (GoogLeNet); the first one combined

with a sliding-window approach for feature extraction

while the second one for image classification. Both Cer-

entini et al.[19] and Al-Bander et al.[9] performed their

experiments on the publicly available RIM-ONE dataset.

Despite the good performance reported by the above

models, none of them fine-tuned the pre-trained models.

In addition, no models adopted the large number of un-

labeled retina images, which are more available than the

labeled ones. Presenting such a model is required and

can be generalized to other eye diseases and other medi-

cal image analysis tasks since it does not depend on the

availability of the large annotated dataset.

3. GLAUCOMA CLASSIFICATION BASED ON
SEMI-SUPERVISED CNN

We combined the transfer learning (Section 3.1) with the

self-learning (Section 3.2) to perform semi-supervised
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Fig. 1: Flowchart of the semi-supervised transfer learning

CNN method for glaucoma detection in fundus images.

learning for detecting glaucoma. First, we defined the

symbols to be used in this section. The training dataset

X is composed of two parts: X = [L,U ] ∈ Rd×N ,

where L = [x1, x2, . . . , xl] ∈ Rd×l represents the la-

beled samples and U = [xl+1, xl+2, . . . , xl+u] ∈ Rd×u

represents the unlabeled samples. The training process of

the proposed method consists of two stages as shown in

Figure 1. First, a pre-trained CNN model from a non-

medical image domain is transferred and fine-tuned to

learn the representative features of retina images. Sec-

ondly, the updated CNN model is used to select the most

reliable samples from the unlabeled data using the self-

learning method. When the self-learning process has fin-

ished, the unlabeled samples are included in the training

data with the labeled assigned by the updated CNN.

3.1. Transfer Learning

In order to label the unlabeled samples and use them later

for training, the underlying classifier should have a high

accuracy. Instead of training a CNN from scratch with

a limited-size dataset, we used a pre-trained CNN and

modify it with our small labeled samples. We chose the

VGG-16 model for its high performance reported in the

literature. It contains convolution layers, max pooling

layers, fully connected layers and a softmax layer, which

is the output layer. The weights from the model are trans-

ferred as the weights for our network and thus the full

network (after removing the fully connected layers) is

treated as a fixed-feature extractor for the new dataset.

To prevent overfitting, data augmentation were employed
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including shift, flip and random zoom-in of the image.

Two stages of training were performed. The first

training was performed to extract the features from the

layer right before the output layer and was used for clas-

sification. These higher-level features are available in

the deeper layers of the CNN. Therefore, the top fully

connected layers and softmax layer were replaced by the

following new layers while the rest of the layers were

frozen to keep the weights from changing. A flat layer

was added to convert the output of the convolutional lay-

ers, flattening its whole structure to create a single long

feature vector to be used by the dense layer for the fi-

nal classification. Two batch normalization layers were

added between the two fully connected layers and the

output layer. This is because the VGG-16 model is deep

and our training datasets are small, so it is easy to en-

counter the vanishing gradient problem. Finally, a soft-

max layer was added to map the output to two categories.

We used the ’Adam’ method [10] as our optimizer, which

has the ability to work well despite minimal tuning [11].

For the second training, the last convolutional block of

the VGG-16 was unfrozen and retrained multiple times

to be customized to the new dataset. The optimizer at

this stage was changed to Stochastic Gradient Descent

(SGD) which empirically performs better than Adam at

this stage [11].

Learning the model was achieved by using the cross-

entropy loss [12] on the softmax normalization score

which is defined as:

J = − 1

L

(
L∑

i=1

yi · log (ŷi)
)

(1)

where y is the ground-truth for x, ŷ is the estimated value

and L is the dataset size of the labeled samples.

3.2. Self Learning

To improve the robustness of the classifier, especially

when we have insufficient labeled samples, it is neces-

sary to extend the initial training set. Thus, the self-

learning method [13] is utilized to increase the number

of the initial training samples L with samples from unla-

beled set that have high confidence when classified with

the transfer classifier. The assigned labels of these sam-

ples are known as pseudo-labels and generated in an it-

erative fashion to obtain a stable and accurate classifier.

Given a set of labeled data L and a set of unlabeled data

U , self-learning proceeds as follows: (1) The pre-trained

CNN model from Section 3.1 is used to classify the unla-

beled data U . (2) The prediction scores are ordered and

the subset U ′ ⊂ U for which the classifier has the high-

est confidence scores is added to L and removed from

U . At this stage, the labels for the set U ′ are called

pseudo-labels. (3) The classifier is re-trained using the

new L + U ′ training set. These steps are repeated until

the algorithm converges. At the end of the learning pro-

cess, the remaining unlabeled samples are dropped be-

cause they are not reliable. To avoid overfitting, each time

the a subset of samples U ′ is selected, the ratio of the nor-

mal to glaucoma should be the same as the distribution of

labeled data [14]. The loss function for the self-learning

is the same as Eq 1, which was used in the supervised

learning. (4) Finally, the new glaucoma-specific classi-

fier is evaluated with the testing data.

4. EXPERIMENTS

RIM-ONE [15], a publicly available dataset of retinal im-

ages, was used for training and evaluating the proposed

method. It consists of 455 high-resolution images of

which 255 images are categorized as normal and 200 im-

ages are categorized as belonging to patients with glau-

coma. A subset of around 1, 500 images from the RIGA

[16], a public dataset used for evaluating the segmenta-

tion methods in glaucoma detection tasks, was used as

the unlabeled data. This subset of 1, 500 was determined

by the self-learning process following the normal to glau-

comatous ratio in the labeled samples. The images were

cropped to be consisted with the training labeled samples.

The evaluation was based on 20% of the 455 images

using accuracy, sensitivity and specificity, defined as:

Accuracy =
Tp + TN

TP + Fp + FN + TN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

where TP , TN , FP and FN are the number of true pos-

itives, true negatives, false positives and false negatives,

respectively.

4.1. Experimental Setup

We used NVIDIA GTX 1080TI 11GB GPU card with

3584 CUDA parallel-processing core for implementa-

tion. For transfer learning (Section 3.1) setup, the VGG-

16’s weights were downloaded from the Keras GitHub1

and the model was developed using Keras API [17]. The

first training was performed 20 times to train the fully

connected layers and the softmax layer. The learning rate

for the Adam optimizer was set to 0.001. The second

training was performed 50 times to allow the top con-

volutional layers to extract more detailed features. The

fine-tuning requires a stable training process with a lower

learning rate relative to the initial rate used in the first

stage, otherwise the previously learned features could be

destroyed and the optimization could destabilize [11].

1https://github.com/fchollet
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Therefore, the optimizer at this stage was changed to

SGD and the learning rate was decreased to 0.0001.

For self-learning (Section 3.2) setup, the last learning

rate and optimizer from the transfer learning were used.

The subset U ′ contains the highest A samples of normal

and B samples of glaucoma with ratio of A : B set to

1 : 2 similar to the labeled data ratio. The initial sizes

of A and B were set to 30 and 60 samples, respectively.

Since the classifier becomes better with more iterations,

these sizes were increased iteratively during the learning

process by 30 + 3× i, where number 30 denotes the ini-

tial size of A and i denotes the number of iteration. The

number of epochs was initially set to 12 to suit the small

size of the labeled samples and then increased iteratively

by epoch+4× i [18], where i is the number of iteration.

4.2. The Effectiveness of the Self-learning Method.

The self-learning method based on high confidence was

utilized to expand the training set in an iterative manner.

During each iteration, the self-learning method ordered

the prediction scores for the unlabeled samples and the

ones with the highest confidence were selected to join

the training samples. To demonstrate the effectiveness of

the self-learning method, we compared it with the ran-

dom selection method. During each iteration, the same

number of the unlabeled samples are randomly selected

and the highest probability class for each sample was

used as the true label. The classification accuracy of

the two methods varies with the iterations, as shown in

Figure2(a). Obviously, the classification accuracy of the

self-learning method was higher than that of the random

selection method. Thus, it proves the effectiveness of the

self-learning method in utilizing the unlabeled samples.

4.3. The Effectiveness of the Semi-supervised Learn-
ing Method.

After the expansion of the initial labeled training set, the

semi-supervised learning method was evaluated using the

testing set. To demonstrate the effectiveness of expand-

ing the training set with the unlabeled samples, we com-

pared it with the fully supervised model using the same

setup. The results are presented in Table 1(a) and Fig-

ure 2(b). It is obvious that, the classification accuracy of

the semi-supervised method is higher than that of the su-

pervised method. This validates the suggestion that the

self-learning method is capable of utilizing the informa-

tion contained in the unlabeled samples to improve the

classification accuracy of the proposed method.

4.4. Comparison with Related Methods.

Extensive comparison with other related methods is not

feasible for two reasons: (1) no studies have used the
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Fig. 2: Evaluating (a) the self-learning against random

selection, (b) the supervised against semi-supervised.

(a) Comparison with supervised.

Method accuracy sensitivity specificity

Semi-supervised 92.4% 91.7% 93.3%
Supervised 81.25% 74.2% 86.3%

(b) Comparison with the related works.

Method accuracy sensitivity specificity

Semi-supervised 92.4% 91.7% 93.3%
Al-Bander et al.[9] 88.2% 85.0% 90.8%

Cerentini et al.[19] 86.2% n/a n/a

Table 1: Comparison of the proposed glaucoma detector

results with different methods, n/a means not available.

semi-supervised learning concept for glaucoma detec-

tion, and (2) most of the existing studies used their own

private datasets. As an alternative, we compare our per-

formance with the transfer learning methods applied for

glaucoma detection task. To the best of our knowledge,

only two studies by Al-Bander et al.[9] and Cerentini et
al.[19] were evaluated on RIM-ONE using the transfer

learning CNN. The results are presented in Table 1(b).

The results show that the presented method outperformed

the other two approaches with a clear margin. This

was caused by our fine-tuning of the weights in the pre-

trained networks which makes the later layers of the pro-

posed method more specific to the details in our dataset.

The results also show that the supervised methods, even

with transfer learning, are less accurate than the semi-

supervised method due to small number of the labeled

samples. Iteratively increasing the training set causes the

accuracy of the CNN method to be gradually increased.

5. CONCLUSIONS

This paper presented a CNN semi-supervised learning

framework for detecting glaucoma in fundus images. By

employing the self-learning strategy to increase the train-

ing samples using the unlabeled data and fine-tuning a

pre-trained CNN to define a glaucoma-specific classifier,

the presented approach demonstrated promising perfor-

mance compared to existing methods. Improvements to

generalized the framework to detect more eye diseases

are part of ongoing research by the authors.
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