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ABSTRACT 

 

In order to balance the detection time and accuracy, the state-

of-the-art region-based detectors use a fixed number of 

proposals to obtain detection results in the inference phase. 

However, in surveillance scenes, object population varies in 

different images, causing the fixed proposal number becomes 

an undeterminable hyper-parameter, which needs to be 

correspondingly adjusted to maintain high recall. To solve 

this problem, we propose two image-level optimal proposal 

number selection methods called linear proposal number 

(LPN) selection method and adaptive proposal number (APN) 

selection method respectively, both aiming at selecting an 

optimal proposal number for each image to adapt both the 

images with sparsely and densely distributed objects. In LPN 

selection method, we introduce a linear weighting hyper-

parameter to formulate the relationship between the actual 

object number and proposals’ scores to obtain the optimal 

proposal number. To avoid setting the hyper-parameter 

manually, we further propose another APN selection method 

where the optimal proposal number of each image is selected 

by exploring the distribution of the proposals’ scores. Results 

obtained from the UA-DETRAC car dataset and self-built 

bird dataset (BSBDV 2017) show that our proposed methods 

can largely improve the detection performance in terms of 

detection time and accuracy without any re-training process. 

 

Index Terms— Object detection, Optimal proposal 

number, Linear proposal number selection, Adaptive 

proposal number selection, Surveillance scenes 

 

1. INTRODUCTION 

 

Object detection in surveillance scenes is an active research 

area since it has a wide range of applications, such as 

ecological monitoring, traffic surveillance, society security 

surveillance, etc.  Different from the generic object detection, 

in surveillance scenes, object population is usually distributed 

inconsistently and changes unexpectedly in different images. 
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Fig 1 shows the examples of costal wetland bird detection and 

vehicle detection where the object population varies greatly 

in particular monitoring scenes. 

One of the most important and successful frameworks for 

generic object detection is the region-based CNN (R-CNN 

family) method [3-5]. During inference, an object detection 

network performs a sequence of convolution operations over 

an image using deep convolutional neural network (CNN). 

The network then bifurcates into two branches, including 

Region Proposals Network (RPN) and RoIs-wise 

classification network (RCN). First, RPN extracts proposals 

by generating anchor boxes of specific size and aspect ratios 

at each region of an image. It then, rank these anchor boxes 

and adopt non-maximum suppression (NMS) to the selected 

top-K ranked anchors to generate P higher-quality proposals. 

After that, RCN generates classification and regression scores 

of the further selected top-N (N<P<K) ranked proposals 

generated by RPN [7]. Note that these top-N ranked proposals 

are supposed to cover all the objects. 

In general, to balance the detection time and accuracy, N 

is a fixed number which is set as 300 by default. However, in 

actual surveillance scenes, N becomes an undeterminable 

                                   

  

  

Fig. 1 Examples of object detection in surveillance scenes. 

Costal wetland bird detection (left) and vehicle detection for 

traffic surveillance (right), containing densely distributed 

objects (above) and sparsely distributed objects (bottom).  
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hyper-parameter considering that the object population varies 

greatly in different images. With a small N, it may fail to 

cover all the objects in an image where the objects are densely 

distributed, leading to a low recall. In contrast, with a large N, 

it will unfortunately increase the detection time though it 

could contribute a little to the recall and average precision. 

To tackle the problem mentioned above, we present two 

variable proposal number selection methods based on region-

based detectors called linear proposal number (LPN) 

selection method and adaptive proposal number (APN) 

selection method, respectively. Both methods aim at selecting 

an adequate proposal number for each image to adapt both 

the images with sparsely and densely distributed objects, 

which enables the generated proposals to cover all the objects 

in a more efficient way. More importantly, both methods 

achieve better performance without any re-training process 

on existing models so they can be widely adopted in any 

region-based CNN detector. 

The remainder of this paper is organized as follows: 

Section 2 presents the details of our proposed two image-

level optimal proposal number selection methods; Section 3 

presents intensive experiments and comprehensive analysis; 

Section 4 concludes our work. 

 

2. PROPOSED METHOD 

 

Proposals are a set of candidate regions in an image that may 

potentially contain objects. Obviously, as the actual number 

of objects varies in different images, the number of proposals 

needs to be correspondingly adjusted to maintain a high recall.  

Our goal is to select an optimal proposal number for each 

image in the inference phase. That is to say, a large proposal 

number for images with densely distributed objects and a 

small proposal number for images with sparsely distributed 

ones. In this section, we elaborate our proposed variable 

proposal number selection methods called LPN selection 

method and APN selection method, respectively. 

 

2.1. Linear Proposal Number Selection Method 

 

Given that the optimal proposal number of a single image M 

is of linear correlation with the actual number of objects 𝑛 in 

that image, which can be represented as: 

𝑀 = 𝑣1  ×  𝑛   (1) 

where 𝑣1  is a proportional coefficient, 𝑣1 > 0. Considering 

that the actual number of objects in an image is not directly 

available, we need to figure out a way to approximately 

estimate the n of that image. 

The region proposal network (RPN) generates 

classification scores and regression offsets for anchor boxes 

of specific size and aspect ratios of an image. Then, these 

anchor boxes are ranked in descending order according to 

their scores. The selected top-K (default K = 6000) ranked 

anchor boxes to which the regression offsets are added to 

obtain image-level co-ordinates of each anchor. And then, 

greedy non-maximum suppression (NMS) is applied to these 

top-K ranked anchor boxes, after which we eventually 

generate P region proposals [7]. The total score of the 

proposals is represented as follows: 

𝑠 =  ∑ 𝑠𝑐𝑜𝑟𝑒𝑖
𝑃
𝑖=1     (2) 

where 𝑠𝑐𝑜𝑟𝑒𝑖 is the score of the i-th proposal, P is the total 

number of proposals after NMS. Inspired by the core idea of 

RPN, we formulate the relation between the proposals’ scores 

and the actual number of objects 𝑛 according to the following 

considerations. For each input image with the same resolution, 

the initial distribution of those anchor boxes is the same. 

Therefore, the total score of proposals s varies with the actual 

number of objects. Obviously, s is in positive correlation with 

n. For simplicity, s is assumed to be in linear relation with n, 

representing as: 

𝑠 =  𝑣2  ×  𝑛.   (3) 

Based on equation (1) and (3), the optimal proposal number 

M is formulated as: 

𝑀 =  
𝑣1

𝑣2
× 𝑠 = 𝑤 ×  𝑠.  (4) 

Thus, M can be simply computed by multiplying linear 

weighting parameter w and proposals’ scores s. Here, 𝑤 > 0. 

 

2.2. Adaptive Proposal Number Selection Method 

 

In the LPN selection method proposed above, although the 

hyper-parameter of fixed proposal number is removed, the 

linear weighting hyper-parameter w still needs adjustment 

according to the object population variation in actual scenes. 

To avoid setting the hyper-parameter manually, we further 

propose the adaptive proposal number (APN) selection 

method. 

As mentioned above, all the anchor boxes are ranked in 

descending order, then the NMS is performed to the top-K 

ranked anchor boxes which are eventually utilized to generate 

P region proposals. To explore the distribution of the scores 

of the region proposals after NMS, three scatter plots are 

shown below to illustrate the changing pattern of proposals’ 

scores. Fig 2 shows three image with different object 

population from BSBDV 2017, together with their 

corresponding scatter plots of ranked P proposals’ scores in 

descending order. It is noted that P, the total number of 

proposals after NMS, is indefinite. From each scatter plot, it 

could be observed that the ranked scores drop slowly in the 

tight range close to 1, and then drop much more rapidly 

around the median value, forming an ‘inflection point’ in the 

plot. Furthermore, by comparing the three pairs of images and 

their corresponding scatter plots, it can be found that the 

position of the ‘inflection point’ is closely related to the 

number of objects in each image. The more objects exist in 

an image, the more proposals with high scores are generated, 

then the position of the ‘inflection point’ moves right along 

the x-axis. Therefore, the optimal proposal number could be 

inferred from the ‘inflection point’. 

 To be more clearly, we define the value of difference of 

the adjacent scores in each interval as the score descending 
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velocity. Then, the maximum of score descending velocity is 

computed and its corresponding proposal index is regarded as 

the optimal proposal number M. Meanwhile, it’s observed 

that the ‘inflection point’ should not be in the tight range close 

to 1. Thus, a calculation range of scores are set as 𝑠𝑐𝑜𝑟𝑒𝑖  ∈
[0.5, 0.9], the set of their corresponding proposals’ index are  

represented as S. Therefore, the optimal proposal number M 

in APN selection method is represented as: 

𝑀 =  {
𝑎𝑟𝑔 max

𝑖∈𝑆
(𝑠𝑐𝑜𝑟𝑒

𝑖+
𝑑

2

− 𝑠𝑐𝑜𝑟𝑒
𝑖−

𝑑

2

)   𝑖𝑓 min(𝑠𝑐𝑜𝑟𝑒) < 0.9

𝑃                                                            𝑖𝑓 min(𝑠𝑐𝑜𝑟𝑒) ≥ 0.9
         (5) 

where P represents the total proposal number after NMS, d 

represents the length of each small interval and it is set as 5 

in our experiments, min(score) represents the minimum of the 

proposals’ scores mentioned above. 

 

3. EXPERIMENTS 

 

In our experiments, we adopt the Faster R-CNN framework 

with feature pyramid network, simply referred to as FPN [9], 

as our baseline model. In order to improve the detection 

performance in surveillance scenes, the LPN selection 

method and the APN selection method are respectively 

introduced to RPN in the inference phase. Experiments are 

conducted over two object detection datasets collected from 

surveillance scenes, including the UA-DETRAC object 

detection benchmark [10] and our self-built bird dataset 

(BSBDV 2017). Average Precision is the evaluation metric 

which follows the standard PASCAL VOC criteria, i.e., IoU

＞0.5 between ground truths and predicted boxes [11]. 

 

3.1. Datasets 

 

The Birds dataset of Shenzhen Bay in distant view (BSBDV 

2017) is our self-built bird dataset, which is collected in the 

surveillance scenes of the National Nature Reserve in 

Shenzhen Bay. We manually annotate 1,772 images with 

over 10 categories of birds, leading to a total of 7,835 labeled 

bounding boxes. It is remarkable that the size of birds varies 

greatly from 18×30 to 1274×632, bringing difficulties to 

detection. Moreover, as mentioned above, the object 

population is severely unbalanced and varies greatly in 

different images. For evaluation, 1,421 images are used for 

training and the remaining ones are for testing. 

The UA-DETRAC [10] is a large car detection 

benchmark, which contains 1.21 million car instances. The 

images are of resolution 960×540. To better demonstrate the 

detection performance in surveillance scenes, we choose 

1,500 images which are captured in traffic surveillance 

scenes. It contains 27,264 instances in total whose size vary 

from 10×10 to 250×150. Since the UA-DETRAC dataset is 

collected from surveillance videos, its object population is 

relatively more balanced in different images. 

 

3.2. Implementation Details 

 

For both car and bird detection tasks, we use the ImageNet 

[12] pre-trained ResNet-50 model [13] to initialize our 

backbone network. We resize the input images to 640 and 512 

on the shorter side for BSBDV 2017 and UA-DETRAC, 

respectively. The implementation is based on the publicly 

available Feature Pyramid Network [9] built on the Caffe 

platform[14].The whole network is trained end-to-end with 

Stochastic Gradient Descent (SGD) with learning rate of 

0.0001 on a single NVIDIA GeForce GTX TITAN X GPU 

with 12GB memory. Other settings follow [9]. 
 

3.3. Performance Comparison 

 

To illustrate the advantages of our proposed methods, we 

compare several detection methods in our experiments, 

including FPN [9] with traditional fixed proposal number 

(FPN), FPN with LPN selection method (LPN-FPN) and FPN 

with APN selection method (APN-FPN). Besides, we also 

use other state-of-the-art detection frameworks for 

comparison, including YOLOv2 [1], SSD [2], Faster R-CNN 

[5], R-FCN [8] and our previous work Faster R-CNN+RON 

[6]. The detection results on BSBDV 2017 and UA-DETRAC 

are shown in Table1 and Table 2 respectively. Noted that we 

also vary linear weighting hyper-parameter w to figure out its 

influence on detection performance. Experimentally, we set 

 

Fig. 2 Images from BSBDV 2017 and their 

corresponding scatter plots of ranked proposal score in 

descending order. 

 

3799



w as 0.3 and 0.12 when applying LPN-FPN on BSBDV 2017 

and UA-DETRAC respectively. 

From the experiment results on BSBDV 2017 (Table 1), 

it is obvious that our proposed LPN-FPN and APN-FPN 

achieve the best AP while keeping comparable detection time 

in contrast to other methods. Here, it is worthy of note that 

we come over a great problem derived from the FPN baseline 

that the average detection time increases with the growth of 

the proposal number. Although the AP can be improved with 

more proposals, the increased detection time, however, is 

unendurable under actual surveillance scenes. Specifically, 

compared with FPN with 300 proposals and with 600 

proposals, our proposed LPN-FPN and APN-FPN improve at 

least 6% and 5.8% AP respectively, meanwhile maintain 

comparable detection time. Furthermore, compared with FPN 

with 1200 proposals, although the AP of our proposed LPN-

FPN and APN-FPN improve by only 0.4% and 0.2%, the FPS 

of our proposed methods increase by 29.6% and 32.1%. 
Therefore, our proposed image-level optimal proposal 

number selection methods solve the conflict between the 

detection time and accuracy and show great adaptability over 

the object detection tasks with unbalanced object population 

and variable object number in surveillance scenes. 

Table 2 shows the experiment results on UA-DETRAC 

car dataset. Our proposed LPN-FPN and APN-FPN also 

achieve the best AP. Under the same detection time, the AP 

of our LPN-FPN and APN-LPN improve by 0.2% and 0.1% 

compared with FPN with 600 proposals. It is notable that the 

limited improvement is mainly attributed to the balance and 

stability of object population in the UA-DETRAC dataset. 

One example of detection results is shown in Fig 4. 

From Fig 3, a comparison of the left and right images 

indicates that our proposed LPN-FPN significantly improves 

the detection performance. 

 

4. CONCLUSIONS 

 

In this paper, we have proposed two image-level optimal 

proposal number selection methods called LPN selection 

method and APN selection method, and introduce them to 

region-based detectors in order to improve the detection 

performance in surveillance scenes. Both of them overcome 

the problem derived from the region-based methods that the 

fixed proposal number needs to be set manually, which 
undoubtedly undermine the detection performance. Instead, 

image-level optimal proposal number is selected for each 

image in the inference phase according to different object 

population. Extensive experiments on two object detection 

datasets in surveillance scenes have convincingly 

demonstrated the effectiveness of our proposed approaches in 

terms of average detection time and accuracy.  

Table 2 Detection results on UA-DETRAC 

Framework 
Backbone 

Network 
Proposals 

AP 

(%) 

Time 

(s) 

YOLOv2[1] Darknet - 44.3 - 

SSD300[2] VGG-reduce - 67 - 

Faster R-

CNN[5] 
ResNet-50 1200 58.3 - 

Faster R-

CNN[5] 
ResNet-101 1200 62.1 - 

Faster R-

CNN+RON[6] 
ResNet-101 1200 71.1 - 

FPN[9] ResNet-50 300 79.6 0.192 

FPN[9] ResNet-50 600 86.6 0.228 

FPN[9] ResNet-50 1200 86.6 0.328 

LPN-FPN ResNet-50 
Linear 

variation 
86.8 0.228 

APN-FPN ResNet-50 
Adaptive 

variation 
86.7 0.257 

 

 
(a) FPN (600 proposals)                   (b) LPN-FPN 

Fig. 3 Detection results on BSBDV 2017 (1st row) and UA-

DETRAC (2nd row) using FPN (600 proposals) and our 

proposed LPN-FPN.  

 

 

Table 1 Detection results on BSBDV 2017 

Framework 
Backbone 

Network  
Proposals 

AP 

(%) 

Time 

(s) 

YOLOv2[1] Darknet - 34.6 - 

SSD500[2] 
VGG-

reduce 
- 42.0 - 

Faster R-

CNN[5] 
ResNet-101 1200 54.5 0.679 

Faster R-CNN 

+RON[6] 
ResNet-101 1200 58.0 0.611 

R-FCN [8] ResNet-50 1200 61.5 0.403 

FPN[9] ResNet-50 300 61.2 0.459 

FPN[9] ResNet-50 600 61.3 0.498 

FPN[9] ResNet-50 1200 66.9 0.617 

LPN-FPN ResNet-50 
Linear 

variation 
67.3 0.476 

APN-FPN ResNet-50 
Adaptive 

variation 
67.1 0.467 
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