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ABSTRACT
Predicting the gaze of a user can have important applications in hu-
man computer interactions (HCI). They find applications in areas
such as social interaction, driver distraction, human robot interac-
tion and education. Appearance based models for gaze estimation
have significantly improved due to recent advances in convolutional
neural network (CNN). This paper proposes a method to predict the
gaze of a user with deep models purely based on CNNs. A key nov-
elty of the proposed model is that it produces a probabilistic map
describing the gaze distribution (as opposed to predicting a single
gaze direction). This approach is achieved by converting the regres-
sion problem into a classification problem, predicting the probabil-
ity at the output instead of a single direction. The framework relies
in a sequence of downsampling followed by upsampling to obtain
the probabilistic gaze map. We observe that our proposed approach
works better than a regression model in terms of prediction accuracy.
The average mean squared error between the predicted gaze and the
true gaze is observed to be 6.89◦ in a model trained and tested on
the MSP-Gaze database, without any calibration or adaptation to the
target user.

Index Terms— Convolutional neural networks, gaze estima-
tion, regression by classification

1. INTRODUCTION

Gaze is an important communicative cue in studying human inter-
action, playing a key role in understanding what he/she is attending
to [1], who he/she is interacting with [2] or what he/she is interested
in [3]. Estimation of gaze can be helpful in analyzing visual atten-
tion [4], creating smart interfaces [5], and predicting the engagement
level of an interlocutor during a conversation [6]. While commercial
gaze detection systems have achieved very accurate performance in
a controlled environment, there are still open challenges when the
intended system does not use any user calibration, or invasive equip-
ments. Our study explores a novel deep learning architecture that
not only estimates the gaze direction without user calibration, but
also provides a gaze map describing the probability that the user is
looking at different locations.

With the advancement in the development of deep learning al-
gorithms, especially convolutional neural networks (CNNs), various
algorithms have been developed to predict gaze location from the
face image [7–9]. Most implementations to predict gaze rely on re-
gression techniques, which predicts the horizontal and vertical posi-
tion of the visual target. This paper proposes an alternative approach
where the location is directly predicted in a 2D space (i.e., regres-
sion by classification). We use CNNs without fully connected layers
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such that each layer represents an image describing gaze direction
with different resolutions. First, the model follows a sequence of
max-pooling which reduces the resolution of the predicted image,
capturing the key discriminative features needed to predict the gaze
direction. Then, the model relies on a sequence of upsampling to
obtain the final output image, which, in this study, is set to 48 × 24
pixels. This image provides a probabilistic map for the gaze.

We evaluate the proposed approach with the MSP-Gaze corpus
[10], selecting the gaze direction in the gaze map with the highest
probability. With this approach, we obtain a model that predicts the
gaze with an average error of 6.89◦ in a user independent setting
without any calibration or adaptation applied to the target user. This
result is not only significantly better than the results achieved by
a conventional regression model based on CNNs, but also provides
extra information by predicting confidence regions obtained with the
probability map.

2. RELATED WORKS

Algorithms for gaze estimation from images have seen major ad-
vancements in recent years. Early studies on predicting gaze estima-
tion used intrusive equipments such as chin rests and head mounted
devices, achieving very high gaze location estimation [11,12]. Some
methods used active IR illumination [13–15]. While earlier studies
were more focused on model-based approaches [13, 16, 17], recent
efforts have focused on appearance based approaches [7–10], lever-
aging recent advancement in computer vision. A comprehensive re-
view of eye tracking techniques can be found in Hansen and Ji [18]
and Rahayfeh and Faezipour [19]. This section reviews studies on
appearance based models.

Appearance-based methods directly use the eye image to predict
the gaze. Some of these methods are purely based on machine learn-
ing, predicting the gaze location from the image without estimat-
ing landmarks on the eyes [5, 9, 20]. Li and Busso [5] proposed an
appearance based algorithm based on principal component analysis
(PCA). An image of both eyes was projected into the first 30 princi-
pal components. They trained linear regression models to learn the
horizontal and vertical gaze pixels. They improved this model for
user independent gaze estimation with similarity measures [21] and
tensor based formulations [10].

More recently, researchers have attempted to use deep learning
methods to implement appearance based methods for gaze esti-
mation. This approach requires large naturalistic databases with
annotated ground truth gaze labels. Zhang et al. [22] presented the
MPIIGaze database, where multiple users contributed to the data
collection over several months via naturalistic laptop use. This
database contains 213,659 faces of 15 users (six females and five
with glasses). Mora et al. [23] presented the EYEDIAP database
with 3D recording targets in a 3D environment. They included
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static, and naturalistic gaze patterns with free head movements.
Wood et al. [24] presented a large dataset of rendered eye images
that can be used to pre-train networks for robust gaze estimation. Li
and Busso [5] collected the MSP-Gaze corpus where 44 users were
asked to look at various target locations on a monitor screen. Using
these databases, various algorithms have been proposed for appear-
ance based gaze estimation. Zhang et al. [7] proposed a CNN-based
architecture for gaze prediction, which was compared with other
machine learning algorithms (random forest, K-nearest neighbors,
support vector regression, and iris edge detection). They tested
the algorithm on the MPIIGaze and Eyediap corpora, showing that
their CNN-based method performed better than alternative methods.
Krafka et al. [8] proposed a deep model that trains in parallel (1)
images from the left eye, (2) images from the right eye, and (3)
images from the entire face. They used data collected with an iOS
application. Zhang et al. [9] argued that using the entire face for
gaze prediction is better than using the eye region alone. A mask
was trained, which learned the importance of different facial regions
for gaze detection.

Most CNN based architecture have used fully connected layer
before the output layer. Then, the activations are combined to de-
duce a regression loss. The key difference in our method is that it
formulates the regression problem as a classification problem. We
design a network entirely based on convolutional layers, where the
goal is to perform classification on discretized labels, creating a use-
ful probabilistic visual map for the gaze. Our proposed method can
be implemented on top of most of the proposed method for gaze
estimation based on CNN.

3. PROPOSED MODEL

The gaze location is spatially related to the eye image. The target
gaze location is determined by the location of the pupil in the image
and the head orientation of the subject. To capture these relations,
our proposed approach relies on CNN, which has achieved state-of-
the-art performance in encoding spatial information from images.
However, our approach is different from conventional gaze meth-
ods, which estimate the direction of the gaze using regression. Our
method estimates a 2D visual map describing the probability of the
gaze direction, formulating the problem as a classification problem.
The model follows a sequence of max-pooling followed by a se-
quence of upsampling to obtain a probabilistic map describing the
gaze. The approach applies convolution on the image multiple times
to obtain a grid that describes the probability of the gaze in different
discretized region. Li and Busso [10] suggested that using an image
including both eyes provides information about the head rotation.
Therefore, our approach also takes an image showing both eyes of
the subject as input.

3.1. Proposed Model Architecture

The proposed method is inspired by the model presented by Jha and
Busso [25], where a probabilistic model of the gaze was learned from
the head pose of the user in a naturalistic driving environment. No-
tice that this framework is quite different from the proposed method,
since it did not use any image of the eyes or the face, only the infor-
mation about the location and orientation of the head (6D vector).

Figure 1 describes the architecture of our proposed model. Table
1 provides the details of the architecture. Our approach estimates
a patch containing both eyes of the user (Fig. 1). The region of
interest (ROI) is scaled to 100× 25 pixels before sending it as an

Fig. 1. Block diagram of our proposed framework. The architec-
ture relies on max-pooling layers followed by upsampling layers to
obtain the probabilistic gaze map with CNNs.

Table 1. Proposed deep learning architecture relying of max-pooling
and upsampling layers with CNNs.

Layer Spec Activation Dropout Output Dimension
Conv2D 16, 3x3 ReLU 0 16 x 100 x 25
Conv2D 16, 3x3 ReLU 0.25 16 x 100 x 25
MaxPool2D 2x2 - - 16 x 50 x 12
Conv2D 16, 3x3 ReLU 0 16 x 50 x 12
Conv2D 16, 3x3 ReLU 0.25 16 x 50 x 12
MaxPool2D 2x2 - - 16 x 25 x 6
Conv2D 16, 3x3 ReLU 0 16 x 25 x 6
Conv2D 16, 3x3 ReLU 0.25 16 x 25 x 6
MaxPool2D 2x2 - - 16 x 12 x 3
Conv2D 16, 3x3 ReLU 0 16 x 12 x 3
Conv2D 16, 3x3 ReLU 0.25 16 x 12 x 3
UpSampling2D 1x2 - - 16 x 12 x 6
Conv2D 16, 3x3 ReLU 0 16 x 12 x 6
Conv2D 16, 3x3 ReLU 0.25 16 x 12 x 6
UpSampling2D 2x2 - - 16 x 24 x 12
Conv2D 16, 3x3 ReLU 0 16 x 24 x 12
Conv2D 16, 3x3 ReLU 0.25 16 x 24 x 12
UpSampling2D 2x2 - - 16 x 48 x 24
Conv2D 1, 3x3 Softmax - 1 x 48 x 24

input to the network. In the first half of the network, we succes-
sively downsample the image to retain only the discriminative infor-
mation. Every convolutional layer has 16 filters of size 3×3. After
two convolutional layers, we reduce the dimension of the image with
a max-pooling layer. We repeat this process three times such that the
output resolution is 12×3 pixels. After reaching this resolution, we
successively upsample the image. In the first layer, we only upsam-
ple the y axis such that the resulting output is 12×6 pixels. This
step is carried out to change the aspect ratio of the images, bring-
ing it closer to the required aspect ratio imposed by the application,
in our case, the resolution of the monitor (1680×1050 pixels, Sec.
3.2). The 12×6 images are then processed with convolutional layers
and upsampling, increasing their resolution to get the final output of
size 48×24. At the final layer, a single image of size 48×24 is ob-
tained which is passed through softmax layer to obtain a probability
distribution. While the architecture is flexible to obtain a higher res-
olution, we stop at this point to limit the depth and complexity of the
model.

Some spatial component of the data is lost when we pool the im-
age reducing the resolution to 12×3. However, the gaze output lies
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on a low dimensional space. Therefore, it is important to reduce the
resolution, removing non-discriminant information from the image.
Pooling also helps in increasing the receptive field of the network.
While methods such as dilated convolution [26] helps increasing the
receptive field without pooling, these methods are sensitive to the
initialization of the parameters.

The loss functions generally used for classification problems
such as the cross entropy loss are not cost sensitive. For our for-
mulation, this is a problem since the cost of making an error of 1
pixel in the estimation would be the same as making an error of 10
or more pixels. For our purpose, we expect lower cost for an es-
timation that is spatially closer to the ground truth value. For this
purpose, instead of using the ground truth labels as one hot encoded
outputs, we use a Gaussian distribution around the true label. The
distribution adds a weighted reward for choosing any value close to
the target gaze. We also apply the Gaussian mask to the final layer
of the network, so the output of the model matches the mask of the
ground truth gaze. Then, we use cross entropy loss as the loss func-
tion. While the Gaussian mask is used on the estimation of the loss
function computation, the final gaze map produced by our model cor-
responds to the prediction before applying the mask, which reduces
the area of the probabilistic gaze map.

We use Keras [27] on top of Tensorflow [28] to train our model.
We use a learning rate of 0.001, training the network for 150 epochs.

3.2. Database

We use the MSP-Gaze [5, 10] database to train our network. This
database was collected by asking subjects to click on points appear-
ing on a monitor at random locations. The database contains data
collected from 44 subjects (21 males and 23 females). Subjects were
chosen from multiple ethnic backgrounds representing the student
population demographic at The University of Texas at Dallas (Cau-
casian, Asian, Indian and Hispanic). The data was collected in two
different sessions across different days to capture session variability.
The protocol includes natural gaze actions. It also included con-
trolled recordings where the subjects were asked to avoid moving
their head. The protocol also includes different distances between
the subject and the screen. For our network, the inputs are 100×25
ROI images including both eyes, and the ground truth labels are the
target pixel locations in a 1680×1050 resolution screen. In total, we
have 324,771 gaze directions associated with the ROI images. The
details of this corpus are provided in Li and Busso [10].

The evaluation considers user-independent partitions. We divide
the corpus into seven partitions, where data from each subject is ex-
clusively included in one of the partitions. We repeat the experiment
seven times using one partition as the test set. The remainder six par-
titions are used to train the models. The reported results correspond
to the average results obtained across the seven folds.

3.3. Baseline Model

We also train a basic regression model with six convolutional layers
and two fully connected layers to compare the performance of the
proposed approach. Table 2 explains the model architecture of the
baseline method. The loss function corresponds to the mean squared
error (MSE) between the predicted and true gaze. The model jointly
predicts the horizontal and vertical directions of the gaze.

4. RESULTS

This section reports the experimental evaluation of our method. The
evaluations considers comparisons with the baseline method (Sec.

Table 2. Architecture of the baseline regression model using CNNs.

Layer Spec Activation Dropout Output Dimension
Conv2D 16, 3x3 ReLU 0 16 x 100 x 25
Conv2D 16, 3x3 ReLU 0.25 16 x 100 x 25

MaxPool2D 2x2 - - 16 x 50 x 12
Conv2D 16, 3x3 ReLU 0 16 x 50 x 12
Conv2D 16, 3x3 ReLU 0 16 x 50 x 12
Conv2D 16, 3x3 ReLU 0.25 16 x 50 x 12

MaxPool2D 2x2 - - 16 x 25 x 6
Conv2D 16, 3x3 ReLU 0 16 x 25 x 6
Conv2D 16, 3x3 ReLU 0 16 x 25 x 6
Conv2D 16, 3x3 ReLU 0.5 16 x 25 x 6

MaxPool2D 2x2 - - 16 x 12 x 3
Dense 512 ReLU 0.5 1 x 512
Dense 128 ReLU 0.5 1 x 128
Dense 2 - - 1 x 2

Table 3. Angular error between the true and predicted gaze on the
screen using the proposed approach and the baseline method.

Proposed approach Regression model
error [◦] error [◦]

Mean 6.89 10.28
Median 6.11 9.69
95 percentile 14.20 19.45

4.1). It also evaluates the probabilistic map, creating confidence in-
tervals containing the gaze directions (Sec 4.2).

4.1. Comparisons with the Baseline

Our proposed model creates a probabilistic gaze map. We estimate
the most likely point in the probabilistic visual map to directly com-
pare the results between the regression model and our proposed ap-
proach. We estimate the mean, median and 95 percentile of the er-
rors for each subject in the corpus. Then, we average the perfor-
mance across subjects, reporting the results in Table 3. The error
is measured in term of the angular error between the predicted and
true gaze location (degree). The angular error was calculated by in-
terpolating the size of the head to approximate the distance between
the user and the screen, following the approach explained in Li and
Busso [10]. Table 3 shows that our method performs significantly
better than its regression counterpart (one-tail t-test over the errors
across the 44 subjects, asserting significance at p-value = 0.001).
The regression by classification formulation is effective for this task.

Figure 2 shows the vertical and horizontal errors for the predic-
tions of our approach and the baseline method. For our approach, the
errors are clustered around the center of the coordinate (i.e., low er-
ror). For the baseline model, the spread of the errors is higher. These
results show the advantage of using our approach over a traditional
regression method, even when both are implemented with CNNs.

4.2. Confidence Intervals: Accuracy versus Resolution

One of the advantages of using our proposed approach is that we
can derive a probability density map instead of a single gaze direc-
tion as an output. With a probability map, we can create different
confidence regions. If we include regions with low probabilities, the
area of the confidence region will be big. This setting will result in
high accuracy (i.e., the confidence region includes the target gaze
direction), but low spatial resolution (i.e., the area of the confidence
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(a) Proposed approach

(b) Baseline regression model

Fig. 2. Distribution of gaze estimation error.

region is big). If we only include regions with high probability val-
ues, the accuracy will decrease (i.e. the region won’t include the
target point), but the spatial resolution will be better (i.e., smaller
area).

Figure 3 analyzes the tradeoff between accuracy and spatial res-
olution. This figure is created by estimating the area of the small-
est confidence region such that the region includes the target ac-
curacy (e.g., 75% accuracy). For example, to include 95% of the
data point, we need an area of 400cm2 (20cm×20cm). For a 75%
confidence region, the area of the region is approximately 150 cm2

(≈12cm×12cm). While the results are encouraging, there is room
for improvement.

Figure 4 shows two examples for the probability distribution of
the predicted gaze maps. The dot is the true prediction label, while
the cyan region is the predicted distribution. We observe that the
probabilistic maps are reasonably accurate. While for some exam-
ples the true label may not exactly overlap with the dense area of the
predicted region, the outputs are still reasonably close to the actual
gaze direction to be used in most practical applications.

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel approach to predict the gaze of a user.
Instead of separately performing regression, we formulate the prob-
lem as a regression by classification task. Our proposed architecture

Fig. 3. Accuracy versus resolution of the predicted gaze region.

(a) Example 1: eye pair (b) Example 2: eye pair

(c) Example 1: predicted gaze (d) Example 2: predicted gaze

Fig. 4. Probabilistic gaze maps created by our proposed approach
for two examples.

performs classification of gaze direction in a 2D space. The approach
directly obtains not just a gaze direction, but also a probability map
describing the gaze distribution. This approach provides a new for-
mulation for solving the gaze estimation problem by providing con-
fidence regions for the gaze. The results show that the accuracy of
the predictions are better than the accuracy of a regression model of
comparable depth.

While we stop the upsampling at a resolution of 48 × 24 in the
model, it is possible to construct deeper models to obtain results at a
higher resolution. We will investigate variations of the proposed for-
mulation that can lead to better performance (i.e., higher accuracy,
better spatial resolution). Another drawback of the model is that we
decrease the resolution of the image by pooling before upsampling.
While this step helps the network to filter out information that is not
useful for gaze estimation, this approach might lead to loss of spa-
tial information. We plan to investigate models with lateral (resid-
ual) connections [29], such that information at higher resolutions can
be retained. We used the MSP-Gaze database for our experiments,
since it includes several aspects that are important for gaze detection
without calibration or intrusive equipments (i.e., variability in terms
of users, distance to screen, head movements, and sessions). For
our future work, we also plan to investigate the use of the proposed
model trained with other popular databases such as the MPIIGaze
corpus [22]. We are also interested in exploring the accuracy of this
approach in challenging environments for gaze detection such as in
vehicles during naturalistic driving conditions [25].
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