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ABSTRACT

The subspace clustering problem arises in many applications
that involve processing high-dimensional data, i.e. images
and videos. In many of these applications, high dimensional
data is often well approximated by union of low-dimensional
subspaces. This motivated the development of various algo-
rithms to cluster high dimensional data based on the under-
lying intrinsic low-dimensional subspaces. However, the ex-
isting approaches are based on global representation of data
whereas this representation can be easily affected by errors,
occlusions and severe illumination conditions. Here, we pro-
pose a multi-scale approach based on extracting local patches
from different scales and then merging the shared informa-
tion using a weighted scheme based on Grassmann manifolds.
This approach not only benefits from the discriminative infor-
mation from global representation of data but also makes the
clustering task more robust using the information from local
representations. Numerical results show that the proposed ap-
proach significantly outperforms existing subspace clustering
algorithms.

Index Terms— Subspace clustering, Grassmann mani-
fold, Multi-Scale approximation, Multilayer graph

1. INTRODUCTION

In many applications, including signal and image process-
ing tasks, the collection of high dimensional data from
multiple categories can be well represented by union of
low-dimensional subspaces. Recovering these multiple low-
dimensional structures plays a crucial role in the performance
of analyzing and processing high dimensional data algo-
rithms. This motivated the development of several algorithms
for clustering data according to their underlying subspaces,
a problem that is often referred to as subspace clustering
[1]. These algorithms include iterative[2], algebraic[3],
statistical[4] and spectral-based methods [5, 6].

Among many existing methods, sparse subspace clus-
tering (SSC) [7] which merges the advances of sparse rep-
resentation literature with the celebrated algorithm of spec-
tral clustering[8], has strong theoretical guarantees[9] and

works well in practice. The SSC is based on the self-
expressiveness property which assumes that each sample
can be represented as linear combination of other samples
from the same subspace. In particular, given a data matrix
X = [x1, x2, ..., xN ] ∈ RD×N from a collection of k linear
subspace {S`}k`=1, SSC optimizes the following problem[7]:

min
C∈RN×N ,E∈RD×N

||C||1 + λg(E) (1)

such that X = XC + E and Ci,i = 0 for all i,

where C ∈ RN×N and E ∈ RD×N are the coefficient and
error matrices respectively . The norm || · ||1 =

∑
i,j |Ci,j |

is `1 norm which enhances the sparsity of the solution. g(·)
is the regularization term for error matrix which is usually `1
or Frobenius norm. The obtained coefficient matrix is sym-
metrized using |C|+ |C|T which can be considered as a data
affinity matrix. By applying spectral clustering to this affinity
matrix, the final clusters are obtained. The sparsity constraint
and the collaborative representation are the main bases of SSC
and the keys to its superior performance in many applications.

However, SSC is a global approach, in which every sam-
ple is written as linear combination of other samples entirely.
This global view point can degrade the performance signifi-
cantly in presence of occlusions and gross continuous blocks
of error. Moreover, the traditional regularization of error ma-
trix with `1 or Frobenius norms are insufficient in model-
ing contiguous noises (this is due to the implicit independent
assumption for the elements of the support of error matrix
in these norms). On the other hand, the performance of a
mere majority voting approach based on a collection of lo-
cal patches may get affected by non-discriminative patches.
In order to handle gross contiguous noises, we propose an
efficient multi-scale approach that elegantly integrates advan-
tages of both global and local representations. This is carried
out by combining affinity information of local patches from
multiple scales using a weighted multi-layer graph based on
Grassman manifolds.

To the best of our knowledge, this issue is neglected in
majority of existing subspace clustering approaches. How-
ever, there are candidate works in sparse representation liter-
ature (for classification tasks)[10, 11] that highlighted the im-
portance of local representations in collaborative representa-
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tions and few works that magnified the role of local structures
in correctly recovering the ground-truth intrinsic global struc-
ture for different applications[12, 13]. Nevertheless, these
works mainly target supervised tasks or assume a single low
dimensional structure for the data. Moreover, the proposed
approach is based on completely different concepts.

In the remainder of this paper, we present our proposed
framework in details in Section 2 and evaluate the framework
on real datasets in Section 3. Finally, we conclude the paper
in Section 4.

2. MULTI-SCALE PATCH-BASED SUBSPACE
CLUSTERING

Subspace clustering approaches, including the state-of-the-
art SSC, are based on global representation of data where
the global collaborative representation is enforced by the
constraint X = XC. However, global representation is
very sensitive to severely corrupted regions of data. While
local representations are more robust to these corruptions,
the non-discriminative local patches might affect the per-
formance. Moreover, the smaller the patches are, the more
robust they are, but generally the less discriminative informa-
tion they might contain. In order to integrate the advantages
of both representations and to decrease the effect of the
size of patches, we consider a multi-scale structure of data.
The overview of proposed approach, referred to as MG-SSC
(Multi-layer Graph based SSC), is presented in Fig 1.

Fig. 1. Overview of proposed framework (MG-SSC).

In particular,the data matrix X first undergoes a simple
pre-processing step in which duplicate samples are perturbed
by a small Gaussian noise to avoid possible meaningless clus-
ters. Next, we divide each sample xj (here an image) to

b non-overlapping patches. The division is conducted in a
multi-scale manner, from a fine-scale (no division) to coarser
scales (smaller patches) and following this structure, each ob-
tained patch is further divided to b other patches. Usually
2-3 scales are sufficient, because in the very coarse scales,
the patches would lose meaningful discriminative informa-
tion. Let s be the number of scales. (x(i)j )k indicates the (vec-
torized) k-th patch in the scale of i from the sample xj . Each
patch is considered as a representative for the corresponding
sample. SSC algorithm is applied on the collection of ob-
tained patches in different scales separately. This leads to a
collection of coefficient matrices, namely (C(i))k (for k =
1, ..., number of patches in the scale of i and for i = 1, ..., s).

Let M be the total number of coefficient matrices. Each
collection of patches in different scales are considered as a
representative of data matrix from a different view point. In
other words, the obtained set of (symmetrized) coefficient ma-
trices correspond to M multi-view affinities of the same data
matrix. Each coefficient matrix corresponds to a weighted
and undirected graph, where each patch represents a vertex
and the values of elements of the coefficient matrix repre-
sents weights of the edges. Obviously the number of vertices
among different graphs are the same and equal to the number
of data (N ). Therefore, a multi-layer graph structure can be
constructed from the set of coefficient matrices. Each graph
encodes different information/view about the affinity and sim-
ilarity of data samples.

Based on the approach in [14], the information shared by
different layers can be elegantly combined using subspace
analysis on a Grassmann manifold. In this work, authors
reformulated the problem as finding a low dimensional rep-
resentation from multiple low dimensional subspaces on a
Grassmann manifold. Let Lr be the normalized laplacian ma-
trix correspond to graph Gr which is calculated by:

Lr = D
− 1

2
r (Dr − Cr)D

− 1
2

r , for r=1,...,M
where Cr is the corresponding affinity matrix, Dr is the

corresponding diagonal degree matrix andM is the total num-
ber of coefficient matrices. Let the columns of Ur ∈ RN×k

be the first k eigenvectors of Lr (which corresponds to the k
smallest eignevalues). The matrix Ur contains information on
the connectivity of the graph and provides a k-dimensional
subspace representation for the original matrix. Hence, we
have a collection of k-dimensional subspaces {Ur}Mr=1 and
by definition, each linear subspace represents a point on a
Grassmann manifold G(k,N ). Following this line of thought,
the problem of merging the information from different layers
of graphs is converted to finding a low-dimensional subspace
U ∈ RN×k on the Grassmann manifold which is close to the
collection of subspaces. This problem is formulated as[14]:

min
U∈RN×k

M∑
r=1

tr(U ′LrU)− α
M∑
r=1

tr(UU ′UrU
′
r) (2)

such that U ′U = I,
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where the second term is the sum of squared projection dis-
tances between representative subspaceU and each individual
subspace. The first term ensures that the vertex connectivity
in each layer is preserved. The paramter α controls the trade-
off between these two criteria. Based on our experiments, we
set the value of α to 0.5.

However, the different graphs do not contain equal
amount of information. In general the graphs correspond-
ing to coarser scales (smaller patches) contain less discrim-
inative information and should contribute less in the final
representation. Hence, we assign weights to the graphs in
this multi-layer structure such that the graphs corresponding
to coarser layers have lesser impact compared to the graphs
corresponding to finer and more discriminant scales:

min
U∈RN×k

M∑
r=1

wr tr(U
′LrU)− α

M∑
r=1

wr tr(UU
′UrU

′
r) (3)

such that U ′U = I,

where wr (for r = 1, ..., M ) are the weights. The solution
to this problem can be obtained efficiently in closed form by
calculating the first k eigenvectors of the following matrix:

Lfinal =

M∑
r=1

wr Lr − α
M∑
r=1

wr UrU
′
r. (4)

We suggest the following procedure to indicate the values of
weights: all patches in the scale i (the fine scale is considered
the first with i = 1) are assigned the weight b

s−i
2 . For ex-

ample if we have 3 scales (s = 3) and each patch is divided
to 4 patches at every scale (b = 4), the weights correspond-
ing to scale 1 , 2 and 3 would be 4, 2 and 1. We believe by
this procedure, not only the small patches would not get over-
shadowed but also the entire sample in the finest scale would
have the most effect on the final representation.

3. EXPERIMENTS

In this section, we evaluate the proposed approach using two
real-world well-known data sets, namely AR and Extended
Yale B. The clustering error is calculated by following crite-
rion:

error rate =
# of wrongly classified samples

Total # of samples
× 100

3.1. Extended Yale B data set

Extended Yale B[15] consists of face images of 38 human
subject under 64 severe illumination conditions. It is gen-
erally assumed that face images of a subject under varying
illuminations can be approximated by a linear subspace with
intrinsic dimension of 9 [16]. Hence, the set of face im-
ages of multiple subjects can be modeled by a union of

low-dimensional subspaces. For a fair comparison, the same
common experimental settings as [7] are used and the per-
formance of proposed MG-SSC is compared to other recent
existing works in the literature.

For MG-SSC, 3 scales are considered (s = 3) and in each
scale, each patch is divided into 4 non overlapping patches
(b = 4). The average and median error rate for different num-
ber of subjects is reported in Table 1. As it can be seen, MG-
SSC has a significantly better performance compared to other
approaches, especially as the number of subjects increases.
This significant drop in error rate highlights the effect of local
representations in increasing robustness in presence of illumi-
nation variations. Moreover the weighted scheme in MG-SSC
helps to emphasize the more discriminant patches (in finer
scales) compared to patches in coarser scales and at the same
time, benefiting from the information in the coarser scales.

Table 1. Clustering error rate (%) on the Extended Yale B
data set with different number of subjects. The best perfor-
mance is indicated in bold.

Algorithm SSC LRR[17] LatLRR[18] S3C[19] LRSC[20] MG-SSC
2 subjects

Mean 1.87 6.74 2.54 0.52 3.15 0.06
Median 0 7.03 0.78 0 2.34 0

3 subjects
Mean 3.35 9.30 4.21 0.89 4.71 0.09

Median 0.78 9.90 2.60 0.52 4.17 0
5 subjects

Mean 4.32 13.94 6.90 1.51 13.06 0.15
Median 2.19 14.38 5.63 1.25 8.44 0

8 subjects
Mean 5.99 25.61 14.34 2.31 26.83 0.20

Median 4.49 24.80 10.06 2.25 28.71 0.09
10 subjects

Mean 7.29 29.53 22.92 2.81 35.89 0.41
Median 5.47 30.00 23.59 2.50 34.84 0.46

For a better intuition, 3 specific subjects (1, 7, 10) are se-
lected and the embedded vectors corresponding to individual
graphs, namely {Ur}Mr=1, are plotted in Fig 2. The 16 plots in
the first 4 columns (from left) correspond to the coefficient
matrices of the most coarse patches in the scale 3. There
are 16 patches in this scale. The plots in the next column
correspond to coefficient matrices of the patches in the next
scale. There are 4 patches in this scale and finally the co-
efficient matrix corresponding to the patch in the fine scale
(the whole images) is plotted in the rightmost column. For
comparison, the embedded vectors obtained from coefficient
matrix of SSC and our MG-SSC is plotted in Fig 3 (a) and (b)
respectively. The samples belonging to the same grand-truth
clusters are drawn in same colors. Note that 2 dimensions are
sufficient for plotting the embedded vectors in this case. It
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is evident that the embedded vectors in SSC are not discrim-
inant enough and they appear to be very close in the middle
part. In this situation, K-means cannot be successful in dis-
tinguishing the samples from different clusters which leads to
the error rate of 10.94%. On the other hand the coefficient
matrix from MG-SSC framework leads to clearly separated
embedded vectors and hence a successful k-means clustering
can be applied in this space (error rate of 0). Besides, the
embedded vectors plotted in Fig 2 indicate that almost none
of these plots (and hence corresponding coefficient matrices)
are informative enough for accurate clustering and in fact,
MG-SSC has the ability to merge their information without
any prior knowledge on location of discriminative important
clean patches. It can be inferred from this figure that naive
techniques e.g. majority voting cannot perform well in such
cases.

Fig. 2. Individual embedded vectors of samples from 3 clus-
ters from different layers of graph: (a) patches from the coars-
est scale, (b) patches from the middle scale and (c) the fine
scale.

(a) (b)

Fig. 3. Embedded vectors of samples from 3 clusters obtained
from (a) SSC and (b)MG-SSC.

3.2. AR data set

AR data set [21] contains face images of 126 subjects with 26
images for each person. The images are from frontal view

with variations in facial expressions, illumination, and oc-
clusions (scarf and sunglasses). The images are resized to
55 × 40. For MG-SSC, 3 scales (s = 3) are considered and
in each scale, each patch is divided into 9 non overlapping
patches. The clustering performance of MG-SSC is compared
with recent approaches for 5, 7 and 9 subjects from this data
set in Table 2. As it can be seen MG-SSC performs the best
with a very large gap compared to other methods. This indi-
cates the effectiveness of MG-SSC in dealing with occluded
images.

Table 2. Clustering error rate (%) on the AR data set with dif-
ferent number of subjects. The best performance is indicated
in bold.

SSC LRR[17] LatLRR[18] RDLRR[22] RSI[23] MG-SSC
5 subjects 31.54 15.84 9.69 5.27 13.08 0
7 subjects 33.52 19.89 14.70 9.34 16.24 0.85
9 subjects 33.76 21.32 19.68 13.08 20.43 1.10

4. CONCLUSION

In this paper, we proposed a novel multi-scale framework for
the challenging problem of subspace clustering for occluded
and corrupted image data. This approach, dubbed as MG-
SSC, bridges the gap between (discriminant but sensitive to
error) global representation and (robust but not always infor-
mative) local representations of data. The widely used SSC
algorithm is applied on extracted patches from different scales
to obtain a multi-layered graph structure. The information
from these layers is summarized using the embedded low di-
mensional subspace corresponding to each layer on a Grass-
mann manifold. Moreover a simple procedure is utilized to
naturally assign higher weights to patches from finer scales.
The numerical results show a significant improvement over
previously suggested algorithms.
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