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ABSTRACT

Learning Partial Differential Equations (LPDEs) from train-
ing data for particular tasks has been successfully applied to
many image processing problems. In this paper, we aim to
learn compact Partial Differential Equations (LCPDEs) for
color image tasks by proposing a more effective algorithm.
The LCPDEs system is formulated as a linear combination of
fundamental differential invariants and simplified by omitting
the PDE which works as an indicate function. We replace L2-
norm with L1-norm to regularize the coefficients with respect
to the invariants. As the objective function is non-smooth,
we resort to proximal algorithm to optimize it, which en-
sures convergence in an at least sub-linear rate. Experiments
demonstrate the advantages of the proposed method over oth-
er PDE-based methods in terms of both quality and efficiency.

Index Terms— Partial differential equations, L1-norm
regularization, Proximal algorithm, Color images.

1. INTRODUCTION

Partial Differential Equations (PDEs) have shown their supe-
riority in computer vision and image processing [1, 2], e.g.,
denoising [3], enhancement [4], segmentation [5], stereo and
optical flow computation [6]. According to [7], there are usu-
ally two kinds of methods used to design PDEs. For one kind,
PDEs are written down directly, based on some mathematical
understandings on the properties of the PDEs (e.g., anisotrop-
ic diffusion [3] and shock filter [4]). Another kind of methods
basically define an energy functional first, which collects the
wish list of the desired properties of the output image, and
then deducts the evolution equations by computing the Euler-
Lagrange variation of the energy functional (e.g. CTV [8],
GTV [9] and PL [10]). However, both methods for designing
PDEs require high mathematical skills and good insight into
the problems.
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Fig. 1. Illustration of the proposed approach. The PDEs (evo-
lution equations) are formulated as a linear combination of
fundamental translational and rotational invariants. We learn
the coefficients with respect to the invariants (Coef. is short
for coefficients).

Recently, Liu et al. [7] proposed a method that learned
partial differential equations (LPDEs) from training image
pairs (i.e., the input image and the expect output image).
In [11, 7], they successfully apply LPDEs to image restora-
tion, debluring and denoising tasks. They also use LPDEs
to solve some mid-and-high-level tasks that the traditional
PDE-based methods cannot. In [7], they apply LPDEs to
object detection, color2gray, and demosaicking. For saliency
detection, Liu et al. [12, 13] propose to learn the boundary of
a PDEs system. Zhao et al. [14] extend the LPDEs method
to text detection tasks and Fang et al. [15] propose a learning
PDEs model to feature learning. Although they have made
great progress, they mainly focus on gray images or particular
tasks.

In this paper, we focus on color images and propose a
Learning Compact PDEs (LCPDEs) model with an effective
solving algorithm. An illustration of our approach is shown in
Figure 1. We assume that all the PDEs in our system are evo-
lution equations [16] and the evolutionary rates of the PDEs
are formulated as linear combination of fundamental transla-
tional and rotational invariants. When given training image
pairs, we learn the coefficients with respect to the fundamen-
tal invariants to obtain data-driven PDEs. Yet, our model has
the following distinctions from others. First, we design our
PDEs system only has three coupled PDEs (for R, G, B three
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Table 1. Fundamental differential invariants.
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channels, respectively, see in Figure 1), omitting the PDE
with respect to indication function which was introduced for
collecting global information in Liu et al. [7]. As it is re-
dundant for color image and omitting it can reduce the op-
timization difficulties. Second, we use L1-norm (also called
sparsity regularization), instead of L2-norm, to regularize the
coefficients with respect to the fundamental invariants, since
we find that for color images these coefficients are usually in
a sparse representation. Third, we resort to the proximal al-
gorithm [17, 18] to optimize the objective function as the op-
timal control approach proposed by [7] cannot optimize non-
smooth function. Note that LCPDEs can handle many color
image tasks as one just need to prepare the training image
pairs for each task.

In summary, the advantages of our common model are as
follows:

1. A learning compact PDEs (LCPDEs) model is pro-
posed by omitting the PDE which works as an indica-
tion function and replacing L2-norm regularization to
L1-norm regularization. It is much suitable for color
image tasks.

2. We resort to the effective proximal algorithm for learn-
ing the compact PDEs. The algorithm can guarantee
the convergence in an at least sub-linear rate.

2. LEARNING COMPACT PDES

In this section, we introduce the LCPDEs model and present
the whole problem formulation.

2.1. PDEs formulation

We assume that the color image process can be described
as three evolution equations. Considering the translational
and rotational invariance of computer vision and image pro-
cessing problems, it is proved [7] that the evolutionary rates
are functions of fundamental differential invariants, which
form “bases” of all differential invariants that are invariant
with respect to translation and rotation. As shown in Table 1,
there are 37 fundamental differential invariants {invi(u),
i = 0, · · · , 36} up to the second order.

Considering the simplest case, we choose the evolution-
ary rates as a linear combination coefficients of fundamen-
tal differential invariants. Then the coefficients respect to
fundamental invariants are provably functions of time t on-
ly and independent of spatial variables [7]. When training,
we minimize the difference between the output of PDEs and
the ground truth (the last two columns in Figure 1), which is
a PDEs constrained optimal control problem, formulated as:

min
a
E (a(t)) =

1

2

M∑
m=1

3∑
c=1

∫
Ω

(Ocm − ucm(x, y, T ))
2 dΩ

s.t.


∂ucm
∂t =

36∑
i=0

aci (t)invi(um(t)), (x, y, t) ∈ Q,

ucm(x, y, t) = 0, (x, y, t) ∈ Γ,
ucm|t=0(x, y, t) = Icm, (x, y) ∈ Ω,

(1)

where {(Im,Om) = (Icm, O
c
m)|c = 1, 2, 3,m = 1, · · · ,M}

denote the M input/output training image pairs, um(x, y, t)
is the evolution image at time t with respect to the input im-
age Im, Ω ⊂ R2 is the (rectangular) region occupied by the
image1, T is the temporal span of evolution which can be
normalized as 1, Q = Ω × [0, T ], Γ = ∂Ω × [0, T ], and ∂Ω
denotes the boundary of Ω.

Note that we omit the PDE with respect to indicate func-
tion which was introduced for collecting the global informa-
tion [7] as it can reduce the optimization difficulties and the
PDE is also redundant for color image tasks. Experiments
show that our model is more suitable than LPDEs [7] for col-
or images.

2.2. Problem formulation with L1-norm regularization

For most color image problems, we observe that a few funda-
mental invariants should be enough to represent the governing
functions. That means the coefficient functions {aci (t)|i =
0, 1, · · · , 36, c = 1, 2, 3} should be sparse. For example, the
mostly used diffusion equations F = div(cu) just has one
term tr(Hu) if c is a constant. For anisotropic diffusion, we
have that div(c∇u) = tr(cHu) + (∇u)T∇c, which can be
considered as a combination of tr(Hu) and∇u with the pre-
defined function c. Another reason we choose sparsity regu-
larization is that when there are more terms in the governing
functions, the numerical stability of PDEs is extremely harder
to preserve.

With replacing L2-norm [7] to L1-norm regularization,
the whole LCPDEs formulation can be stated as follows:

E(a(t)) =
1

2

M∑
m=1

3∑
c=1

∫
Ω

(Ocm − ucm(x, y, T ))
2 dΩ

+ λ

36∑
i=0

3∑
c=1

∫ T

0

|aci (t)| dt,

(2)

1The images are padded with zeros of several pixels width around them.
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where ucm(x, y, T ) is the evolution image by (1) at time T
with respect to the input image Im.

3. PROXIMAL ALGORITHM

In this section, we introduce the proximal algorithm to learn
the compact PDEs. It is motivated by the structure of the
objective function (2), which ensures a closed-form solution
on each iteration and guarantees convergence in an at least
sub-linear rate when applying the proximal algorithm.

3.1. Gâteaux derivatives and discretization

3.1.1. Gâteaux derivatives

This subsection is dedicated to the gâteaux derivatives [19] of
the functional E which is the key for derivation of a suitable
minimization scheme. Here we only compute the gâteaux
derivatives of the first term of (2) as the second term is nons-
mooth.

With the help of the adjoint equations, the derivatives of
E(a) in (2) with respect to ac are as follows:

DE

Daci
= −

M∑
m=1

∫
Ω

ϕcminvi(um) dΩ, i = 0, · · · , 36, c = 1, 2, 3.

(3)
First, we need to deduce the adjoint equations for com-

puting the gâteaux derivatives, which is widely used in opti-
mal control methods [20]. The adjoint equations with respect
to φ = [ϕ1, ϕ2, ϕ3] for u = [u1, u2, u3] can be deduced as

∂ϕc

∂t − E
c(u, φ) = 0, (x, y, t) ∈ Q,

ϕc(x, y, t) = 0, (x, y, t) ∈ Γ,
ϕc(x, y, 0) = Oc − uc(1), (x, y) ∈ Ω,

(4)

where

Ec(u, φ) =
∑

(p,q)∈P

(−1)p+q

(
∂p+q

∑3
i=1 σ

c
pq(u

i)ϕi
)

∂xp∂yq
,

σcpq(u
i) =

∂
(∑36

j=0 a
i
j invT (u)

)
∂ucpq

, ucpq =
∂p+quc

∂xp∂yq
.

Then the derivatives of E(a) in (2) with respect to ac are as
follows:

DE

Daci
= −

M∑
m=1

∫
Ω

ϕcminvi(um) dΩ, i = 0, · · · , 36, c = 1, 2, 3.

(5)
We omit the deduction, since it is similar to the existing theory
of optimal control governed by PDEs [7, 20].

3.2. Learning compact PDEs by proximal algorim

We use a finite difference scheme to make the discretization
for the PDEs [7]. Then we can solve the LCPDEs model by
the proximal algorithm. Proximal algorithm was first intro-
duced as an approximation regularization method in convex
optimization and then it showed the superiority in nonconvex
minimization, such as in decision process of economics and
decision sciences (procedural rationality) [17]. It is especially
propitious to the case where the objective function E can be
split as

E = f + g, (6)

in which f : Rn → R is a C1 function whose gradient ∇f
is Lipschitz continuous, and g : Rn → R is non-smooth but
has a closed-form minimizer when it sums with an indepen-
dent quadratic auxiliary function. In this case, the algorith-
m is also known as iterative shrinkage-thresholding algorith-
m (ISTA) [21].

For any L > 0, the proximal algorithm considers the fol-
lowing quadratic approximation of E(a) at a given point y :

QL(a,y) := f(y)+〈a−y,∇f(y)〉+L

2
‖a−y‖2+g(a). (7)

When gotten the gradient of f , the algorithm goes to directly
minimize QL(a,ak) at each iteration. Especially, when g(a)
is the L1-norm regularization, minimizing QL(a,ak) can be
given a closed-form solution, stated as

ak = pL(ak−1) = T 1
L

(ak−1 −
1

L
∇f(ak−1)), (8)

where Tε(ω) = max(|ω|−ε)sgn(ω) is the shrinkage operator.
We denote f(a) as the first term of (2) (the loss of the

control problem) and g(a) as the second term (the L1-norm
regularization). The iteration steps of optimizing objective
function (2) meets the case of (8). We compute the gradient
of f by (5). Usually, L is taken as the Lipschitz constant. But
in our case, the Lipschitz constant of the smooth part (f ) is not
easily computable, so we use backtracking to search L. We
use the same initialization method as [7] did and summarize
the optimization process for LCPDEs in Algorithm 1.

Algorithm 1 LCPDEs by proximal algorithm.
Input Training image pairs {(Im,Om)}Mm=1.
Step 0 Take L0 > 0, some η > 1 and a0.
Step k (k ≥ 1) Find the smallest nongetive integers ik such
that with L = ηikLk−1.

F (pL(ak−1)) ≤ QL(pL(ak−1),ak−1). (9)

Set Lk = ηikLk−1 and compute

ak = pLk(ak−1). (10)
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3.3. Convergence Analysis

We present convergence analysis of Algorithm 1 in this sub-
section. Main results are shown in Theorem 1. For space
limitations, the proofs are omitted.

Theorem 1. The sequence {ak} generated by Algorithm 1
satisfies the following properties:

1. The sequence {ak} is a Cauchy sequence and con-
verges to a critical point of our optimization problem
(2).

2. The sequence {ak} converges to the critical point {a∗k}
of our optimization problem (2) in an at least sub-linear
convergence rate, i.e., we meet the worse case when
θ ∈ ( 1

2 , 1), and there exists ω > 0, such that

‖ak − a∗k‖ ≤ ωk−
1−θ
2θ−1 . (11)

4. EXPERIMENTS

As denoising is one of the most fundamental vision problem-
s, we test on this task to demonstrate the superiority of our
framework from two aspects: the performance of the model
and the efficiency of the algorithm.

4.1. Natural color image denoising

For this task, experiments are verified on images with un-
known natural noise. As LPDEs [7] method is the most relat-
ed work to ours, we use the same dataset as [7] did. We also
compare our method with existing PDE-based methods: col-
or total variation (CTV [8]) and Parallel Level Sets (PL [10]).
For LPDEs [7] and LCPDEs, we randomly choose 6 object-
s and for each object 10 noisy images are taken as samples.
These noisy images and their ground truth images are used
for training. Then we compare all the methods on images of
the remaining objects. All the parameters among the methods
are tuned to the best.

The experiment results are shown in Figure 2. Overall,
we can see that color total variation (CTV) [8] performs much
worse than LCPDEs, LPDEs [7] and PL [10]. PL can remove
noise effectively, but it gives more blur results than LCPDEs
and LPDEs. Although LPDEs gives sharper result than PL, it
fails to remove some noise. The proposed LCPDEs has done
the best balance at the two aspects. Moreover, we present the
average PSNRs and SSIMs [22] of the remaining images in
Table 2. Both of them are higher than all of other methods.

Table 2. The average PSNRs and SSIMs of the remaining
images.

Method CTV [8] PL [10] LPDEs [7] LCPDEs
PSNR 23.61dB 23.99dB 23.97dB 24.89dB
SSIM 78.93% 77.89% 78.99% 79.04%

21.69dB 23.57dB 23.91dB 24.64dB 25.96dB

20.55dB 22.65dB 23.60dB 22.89dB 24.71dB

20.82dB 23.71dB 24.16dB 23.98dB 25.01dB

(a) (b) (c) (d) (e) (f)

Fig. 2. The results of denoising images with natural noise. (a-
b) Noiseless and noisy images. (c-f) Denoised images using
CTV [8], PL [10], LPDEs [7] and LCPDEs, respectively. The
PSNRs are presented below each image.

4.2. Comparison of training error and time

As both LPDEs [7] and our proposed LCPDEs have the train-
ing process and they have the same training error formula-
tion (the objective function without regularization), we com-
pare the training error and training time between LPDEs [7]
and LCPDEs in this subsection. The training error is mea-
sured by (1) with M = 60.

Table 3. Comparison of training error and training time of
LPDEs and our proposed LCPDEs.

Error Time (s)
LPDEs LCPDEs LPDEs LCPDEs Improve
4806 4491 43349 515 O(102)

The training error and time of LPDEs [7] and LCPDEs
are shown in Table 3. Obviously, the training time is great-
ly reduced by LCPDEs. We can see that the training speed
is accelerated by hundred times and the training errors of L-
CPDEs is lower than those of LPDEs in the meanwhile. So
we conclude that our method is much more effective on learn-
ing PDEs for color images than LPDEs.

5. CONCLUSION

In this paper, we mainly focus on LPDEs for color images. A
learning-based compact PDEs (LCPDEs) model is proposed
by omitting the PDE which works as an indicate function
and changing to L1-norm regularization on the coefficients.
We resort to the proximal algorithm for learning the compact
PDEs, which is more effective than LPDEs [7]. In the future,
we hope to apply the LCPDEs to solve some high level tasks.
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