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ABSTRACT

Convolutional Neural Network (CNN) can be used to indis-
criminately predict dense depth and camera motion from im-
ages, however, ignoring the relationship between depth map
and camera motion increases the computational burden to la-
bel the datasets and limits the accuracy of the results. In this
paper, an end-to-end unsupervised dual-branch CNN is pro-
posed to predict a pixel-wise depth map and simultaneously
estimate camera pose. In particular, a weight sharing strategy
for two branches is designed to increase the connection be-
tween depth map and camera motion. Besides, to reduce the
impact of photometric noise, the intermediate feature maps
are utilized to compute feature errors. Experimental results
on the KITTI datasets demonstrate that our method achieves
better performance on dense map prediction and camera pose
estimation comparing with the state-of-the-art approaches.

Index Terms— Depth Prediction, Pose Estimation, Fea-
ture Map, Weight-shared

1. INTRODUCTION

Perceiving the surrounding environment and ego motion are
preconditions for moving agents. The technique to achieve
these two tasks is named Simultaneous Localization and Map-
ping (SLAM), which can be applied in many autonomous
applications, such as mobile robots, unmanned aerial vehi-
cle [1, 2], virtual and augmented reality [3], etc.

Relation to prior work: Most of the applications require
for a map dense enough to depict the environment with more
details. One method to obtain dense map is to utilize depth
sensors, such as RGB-D cameras or stereo cameras. How-
ever, these sensors requires for very expensive computational
expense, and they are not as ubiquitous as monocular color
cameras [4, 5]. Therefore, it is essential to study the SLAM
approaches using a monocular camera.

Traditional monocular SLAM contains three modules:
front-end image operations, back-end optimization and loop
closure [6]. According to the different front-end image oper-
ations, SLAM approaches can be divided into two categories.
One is feature-based method, which adopts hand-crafted

features to build data association between frames [7]. An-
other one named direct method is based on the photometric
consistence hypothesis, which directly deals with the pixel
intensity [8, 9]. In feature-based method, the number of map
points depends on the amount of the features in the image,
and the number of the features is a result of the trade off
between the performance and computational complexity. As
a result, the feature-based approaches are good at tracking
camera pose, but the map is too sparse to depict the envi-
ronment. Compared with the feature-based approaches, the
direct method reconstructs the environment with a denser
map, since the amount of the high intensity pixels is much
more than the features. However, the maps predicted by the
direct approaches are still too sparse to make further use of.

Attributing to the remarkable performance of Convolution
Neural Network (CNN) in dealing with pixel wise task, many
researchers incorporate SLAM with deep learning in recent
years. With a coarse to fine idea, Egien et al. [10] employed
two deep networks to predict a depth map, which can used
to illustrate the rough structure of the environment. Liu et
al. [11] treated the depth prediction as a continuous random
field (CRF) learning problem. However, these methods as-
sume that the camera motion is known in advance. Although
the camera motion can also be regressed by an end-to-end C-
NN from a single image, such as the PoseNet [12], which is
robust to different lighting and motion blur, the camera mo-
tion accuracy is worse than the traditional methods [7, 8].

In order to adapt to the monocular SLAM targets, which is
to predict the dense map and estimate the camera motion on-
ly with consecutive frames, there are several methods [13–15]
utilizing the photometric constraints to achieve unsupervised
training. Nikolaus et al. [13] took optical flow constraints be-
tween frames as loss function to train the CNN, named Disp-
Net. Sudheendra et al. [14] detected and tracked the objects in
the image to improve the depth prediction accuracy. In [16],
to smoothly predict depth map, the photometric noise caused
by photometric error is regulated by L2 loss function. As a
result, this method can predict the map more smoothly. Al-
though these unsupervised approaches can be applied more
flexible, the depth map depicted by these methods are not so
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clear as the one predicted by the supervised methods. More-
over, these methods ignore the connection between camera
pose and depth map both in the aspect of image and 3D re-
construction, which limits the accuracy of camera motion and
depth map.

To deal with these problems, an end-to-end unsupervised
dual-branch CNN is proposed to predict dense depth map and
camera motion from pairs of consecutive frames. The pro-
posed network concludes two branches, which share weights
in the encoder to increase the connection among the dense
depth prediction and camera motion estimation, since the
depth and the camera motion accuracy can promote each oth-
er during the observation. Unsupervised training is applied to
train the proposed network with the constraints between the
consecutive frames. The training loss is designed to contain
two parts, one is the photometric error and another is the
proposed feature error. Motivated by the front-end image
procedure in the direct SLAM method, the feature error is
computed by the intermediate feature maps aiming to reduce
the impact of the photometric noise. Experiments based on
the KITTI datasets demonstrate that our method performs
well in both depth prediction and camera pose estimation
both in the structured and the textured environments.

2. UNSUPERVISED STRUCTURED DEPTH AND
MOTION LEARNING MODEL

2.1. Unsupervised CNN architecture

The architecture of our network is shown in Fig. 1. An end-
to-end convolutional neural network is proposed to predict the
dense depth map and estimate the camera motion from pairs
of successive frames. To clearly describe the structure of the
network, we divide the network into several parts. The Pre-
layers share weights for camera motion and depth map pre-
diction to ensure the feature maps are calculated in the same
manner. Therefore, the same landmarks in the real world can
be presented the same, which strengthen the connections be-
tween the depth map and the camera motion. To reduce the
impact of the photometric noise, the feature map and the o-
riginal image are combined in the loss to train the network in
an unsupervised manner. The final outputs of the networks
conclude the scaled depth maps and the 6 DOF camera pose.
Detailed explanations are shown as follows.

A. Pre-layers for encoding and feature map

The Pre-layers works as part of the encoder in the end-to-end
network. Batch normalization [17] and ReLU max(0, x) are
conducted after each convolution layer. Then, the inputs are
sub-sampled after a max-pooling layer with stride 2. On the
one hand, max-pooling is used to reduce the computation-
al burden. On the other hand, the remarkable landmarks are
strengthened to reduce the photometric noise. At the same
time, each layer in the Pre-layers can produce a set of feature
maps. The feature maps before every max-pooling layer are
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Fig. 1. Network architecture for depth and camera motion predic-
tion. The width and height of the cubes denote the output spatial
dimensions of the corresponding layer, and the size change in the
successive layer is 2, increase or decrease. (a) The kernel size of the
encoder layers before the Pre-layers is 7, and the number of the out-
put channels is 64. The kernel size of the Post-layers is 3. (b) The
pose networks share the encoder layers of the depth prediction lay-
ers. The input is single view image in successive while the output is
the 6-DOF camera translation Tt,t+1 between two adjacent frames.
(c) The intermediate feature maps and the predictions are combined
in the loss function for the unsupervised training of the networks.

preserved for decoder to achieve scale and translation invari-
ance.

B. Post-layers for scaled depth prediction

The rest of the layers for depth prediction are to achieve
the encoder and decoder structure based on the Pre-layers.
The Post-layers is based on the architecture of DispNet [13],
which is used for stereo video depth prediction, and the k-
ernel sizes are adjusted to suit the Pre-layers. The encoder
layers in this part are convolution layers followed by the batch
normalization and ReLU layers. The decoder upsamples the
feature maps which are memorized before max-pooling in the
Pre-layers. The de-convolution layers convolve the upsam-
pled feature maps to predict the depth. There are four scales
of depth maps predicted from each single view image when
training the networks. The four scales of depth maps are all
estimated to achieve the scale invariance.

C. Pose-layers for camera motion estimation

The camera pose is also estimated based on the feature map-
s of the Pre-layers. Differently from the depth prediction
branch, the inputs of the Pose-layers are pairs of reshaped fea-
ture maps in the continuous timestamps, such as the reshaped
feature maps Ft and Ft+1 of It and It+1. Since the camera
pose is a translation from one state to another, the inputs have
to contain at least two single view images taken at different
camera poses. The output is a 6-DOF camera motion Tt,t+1

between the input frames It and It+1.
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2.2. Loss function for unsupervised training

The loss function is used as a forward-backward consisten-
cy constraint between consecutive frames when training the
networks. There are two parts in the loss function: the photo-
metric error and the newly proposed feature error. The pho-
tometric error reflects the relationships among the successive
frames, the camera translation and the depth map. Thus the
photometric error can work as labels in the unsupervised CN-
N to train for the camera pose and the depth map. Therefore,
the two branches can be trained at the same time to make
the training process effective. However, the photometric er-
ror usually brings out photometric noise because of the pixel-
wise calculation. Among successive images, some remark-
able elements should be emphasized, and the smooth pixels
which will bring out photometric noise should be reduced.
To address this problem, we increase the ratio of the feature
error to strengthen the environment structure. The total loss
function is defined as follows:

Lt,t+1 =
∑
s

Lp
s + γ

∑
s

Lf
s, (1)

where Lt,t+1 is the loss between the tth and the t+1th image.
The subscript s denotes the scales. The four scales of predict-
ed depth maps are all calculated here with the correspondence
scaled images to achieve scale invariance. The loss Lp

s and
Lf
s are the photometric error and feature error, respectively.

Compared with the pixel-wise photometric error, the feature
error only measures the error around the remarkable bound-
aries, thus the feature error is smaller than the photometric
error. The parameter γ is used to adjust the feature error to
the same order of the magnitude with the photometric error to
ensure both errors contribute to the network training.

A. Pixel-wise photometric error

The photometric error function is defined as follows:

Lp =
∑
i

‖It(pi)− It+1(ω(pi,dt+1,Tt,t+1))‖, (2)

where pi is the intensity of the ith pixel in frame It, while
dt+1 and Tt,t+1 are the predicted depth and camera transla-
tion, which will be updated to minimize the loss. And formu-
la ω() is defined as the 3D projection warp function, which
projects the 3D point into the target image from the holding
image. The mathematical definition of ω() can be expressed
as:

ω(p,d,T) =

 x
′
/z

′

y
′
/z

′

1/z
′
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where (px,py) denotes the pixel coordinates in the image,
while (x

′
,y

′
, z

′
) denotes the transformed point in the 3D

world, and d is the depth of the 3D point in the camera coor-
dinates.

B. Feature error for environment structure

The feature error is calculated from the feature map generated
by the Pre-layers. This function is with the assumption that
the same identity in the successive images is also presented
the same in the successive feature maps. It can be regarded as
a feature space version of the photometric error function, and
it is proposed aiming to take advantage of the robust feature
map. The feature error is defined as follows:

Lf =
∑
j

‖Ft(fj)− Ft+1(ω(fj ,dt+1,Tt+1,t))‖, (5)

where Ft means the intermediate feature map of frame It.
And fj is the intensity value of the jth pixel in the feature
map. The definition of the wrap function ω() is similarly to
the one in function (3).

For the amount of the effective pixels in the feature map is
small, we ignore the distribution of the features and directly
measure the L1 distance of all the features. Since the feature
maps preserve the photometric consistence, the L1 distance
between the feature maps can also be minimized by the trans-
lation between the input images.

3. EXPERIMENTAL RESULTS

The performance of our method is evaluated on the KITTI
[18] dataset, which is composed of several outdoor scenes
captured while driving with car-mounted cameras and depth
sensor. The evaluation of depth prediction in [10] is used to
calculate the correct depth threshold, the absolute relative dif-
ference, the squared relative difference, the linear RMSE and
the log RMSE compared with the groundtruth of pixel-wise
depth and the pose. The camera pose prediction is measured
by the Absolute Trajectory Error (ATE).

3.1. Quantitative Results

We compare our depth prediction results with some state-of-
the-art methods based on CNN. As shown in Table I, these
methods in the first part train the networks supervised with
ground-truth of the camera pose or the depth. The rest of
the methods are trained with the photometric constraints. The
comparisons between these results suggest that the unsuper-
vised methods have potential to be widely applied in depth
prediction.

The Sfm-Net has three versions with the same network
architecture which are trained in different manner. The log
RMSEs of the three versions are 0.31, 0.45, 0.77, respec-
tively, which means that the networks trained with ground-
truth have advantage over the unsupervised methods. While,
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Table I. Single view depth evaluation

Method Train
Error Accuracy

Abs Sq RMSE RMSE
δ<1.25Rel Rel (log)

Eigen et al [10] depth1 0.40 5.53 8.71 0.40 0.59
Godard et al [19] stereo2 0.15 1.34 5.92 0.25 0.80
Liu et al [11] depth 0.20 1.61 6.52 0.28 0.68
Zhang et al [20] stereo 0.14 1.39 5.87 0.24 0.80
SfM-Net [14] stereo -3 - - 0.31 -

SfM-Net [14] - - - 0.45 -
SfM-Net [14] - - - 0.77 -
SfM-learner [15] 0.22 2.23 7.53 0.29 0.68
ours 0.21 2.11 6.67 0.29 0.73
1 The ”depth” means that method is trained with depth ground-truth as

supervision.
2 The ”stereo” means the model is trained with pairs of images with

known disparities.
3 Blank ”-” in this row means the method is unsupervised.

Table II. Comparison of translation RMSE error (m)
Seq ours ORB SfM-learner Mean Odometry

9 0.020 0.014 0.021 0.032
10 0.018 0.012 0.020 0.028

the log RMSEs of our method and the sfm-learner [15] are
0.29, which is better than the method proposed by Eigen et
al [10], 0.40, and the Sfm-Net, whose result is 0.31. The re-
sults demonstrate that our methods performs well to predict
dense depth map from single images.

To evaluate the performance of our method in camera pose
estimation, we measure the Absolute Trajectory Error (ATE)
as shown in Table II. Our performance is better than sfm-
learner [15], which demonstrates that our strategy to strength-
en the connections between the camera pose and depth map
works well.

3.2. Qualitative Results

We intuitively compare our performance of the single view
depth prediction with sfm-learner [15] to analysis the advan-
tages in environment structure description of our method. As
shown in Fig. 2, our depth map is much clearer than the sfm-
learner no matter in the textured or structured environment.
In the first two input frames, there are not too much textures
to be depicted, the predicted depth of sfm-learner is blurry.
While in our depth map, the messy textures are ignored and
the main structure is clearly predicted. In the following im-
ages, there are only fuzzy outlines of the environment in the
sfm-learner’s results. In the meanwhile, our method is also
shown to be good at depicting the rigid bodies, such as the
cars, walls.

3.3. Feature error efficiency

The reshaped feature map generated by the Pre-layers is
shown in Fig. 3. Different color is utilized to distinguish

Fig. 2. Single-view depth prediction. The images in the first col-
umn are the original input images, and the depth maps in the second
column is the results of sfm-learner, while the last column of depth
maps are predicted by our method.

Fig. 3. Intermediate feature maps when training. The images in
the first column are the inputs, and in the second column are the
intermediate feature maps. The image in the final line is the depth
map of the input.

different feature. The feature map mainly depict the struc-
ture of the environment. The disturbance around the margin
are ignored after dealing with the feature error. Therefore,
the dense depth map can be more accurate to describe the
environment both textured and structured.

4. CONCLUSION

In this paper, we propose an ene-to-end dual-branch CNN
method to predict the dense depth map and the camera motion
between pairs of consecutive images. Our method is trained
in an unsupervised manner, while the loss function contains
both photometric error term and feature error term. The s-
trategy to share weights between the two branches promotes
the relationship between depth map and camera motion, and
it can effectively synchronously improve the accuracy of the
camera motion and dense depth map. The feature error is
based on the feature maps that strengthen the environmen-
t structure. At the same time, the feature error deduces the
impact of photometric noise caused by the photometric error.
The experimental results verified that our method can predict
a dense depth map more accurate in both textured and struc-
tured environments, and the camera pose estimated by our
method achieves comparable accuracy comparing with state-
of-the-art method. In the future work, we would like to study
more about the feature maps to improve the performance of
the SLAM methods.
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