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ABSTRACT 

Computer-vision methods have been extensively used in 

intelligent transportation systems for vehicle detection. 

However, the detection of severely occluded or partially 

observed vehicles due to the limited camera fields of view 

remains a challenge. This paper presents a multi-camera 

vehicle detection system that significantly improves the 

detection performance under occlusion conditions. The key 

elements of the proposed method include a novel multi-view 

region proposal network that localizes the candidate vehicles 

on the ground plane. We also infer the vehicle position on the 

ground plane by leveraging multi-view cross-camera context. 

Experiments are conducted on dataset captured from a 

roadway in Richardson, TX, USA, and the system attains 

0.7849 Average Precision and 0.7089 Multi Object Detection 

Precision. The proposed system results in an approximately 

31.2% increase in AP and 8.6% in MODP than the single-

camera methods. 

 

Index Terms—Vehicle detection, vehicle occlusion, 

multi-camera, region proposal network, multi-view fusion. 

1. INTRODUCTION 

Vision-based vehicle detection methods have recently 

received significant attention in intelligent transportation 

systems (ITSs). Reliable vehicle detection is a fundamental 

component of traffic surveillance with increased safety and 

mobility implications [1]. A comprehensive review of vehicle 

detection system is given in [2]. With the recent resurgence 

of deep learning algorithms in a wide range of fields 

including image processing and pattern recognition [3-5], 

convolutional neural network (CNN)-based single-camera 

object detection systems have been studied [6-10]. However, 

these single-camera systems are not able to detect partially-

occluded vehicles in crowded traffic scene. One way to 

overcome the challenge of detecting partially-occluded 

vehicles is to detect the candidate vehicles using their 

multiple semantic sub-parts [13-15]. Although these methods 

adapt to situations with partial occlusions, they fail when 

vehicles are severely occluded in traffic dynamics [11, 12, 

17]. Another approach to overcome the occlusion challenge 

is to use a multi-camera system and fuse the information from 

each independent camera stream [16, 20]. Recent algorithms 

on multi-camera object detection mainly focus on pedestrian 

detection. These algorithms infer the pedestrian locations on 

the ground plane by extracting monocular features and 

estimating the ground-plane occupancy vector. In order to 

estimate the ground-plane occupancy vector, some of the 

multi-camera object detection systems extract binary 

foreground mask as the feature, which is not robust in 

severely-occluded traffic scenes [18, 19, 21]. Some other 

algorithms use features generated by deep CNN [22, 23]. The 

existing approaches fuse the extracted features to infer the 

occupancy vector. The location of a pedestrian is represented 

by a single ground-plane cell with predefined shape and size 

[18, 19, 21-23]. The fixed-size cells are appropriate for 

detecting pedestrians due to the similarity of the footprint of 

various pedestrians on ground plane. However, using fixed 

cells to detect vehicles that have large variations in shape and 

size, e.g. truck vs. sedan on the ground plane is not 

appropriate. Moreover, in [22], the occupancy vector on the 

ground plane is obtained from each side view independently; 

and in [23], the estimation of the multi-view joint occupancy 

requires higher computational complexity to project every 

ground-plane cell back to each side view.  

Therefore, to address the aforementioned issues, this 

paper develops: 1) a Multi-View Region Proposal Network 

(MVRPN) to estimate the ground-plane occupancy vector by 

leveraging multiple side views simultaneously, and 2) a fine-

tuned pre-trained deep CNN to remove false positive object 

predictions that are generated by the trained MVRPN. In the 

proposed system, the MVRPN is trained by using given 

ground-plane information, which is captured from a top-view 

camera. Instead of using cells with a single predefined size, 

the location of objects on the ground plane are represented by 

cell blocks with adaptive size. Therefore, the proposed 

system can be applied to vehicles with large variations in size.  

The remainder of this paper is organized as follows. 

Section 2 presents the descriptions of the proposed multi- 

view vehicle detection system. Experiments and results are 

provided in Section 3, followed by conclusions in Section 4. 

2. PROPOSED SYSTEM DESCRIPTION 

The core objective of the proposed system is to localize the 

vehicles on the ground plane by fusing synchronized frames 

from a multi-camera network. An overview of the proposed 

system is shown in Fig. 1, and the frequently used notations 

are given in Table 1. A MVRPN is introduced to deduce the 

candidate vehicle Region of Interests (ROIs) on the ground  
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Fig. 1. The overview of the multi-camera vehicle detection system. The original synchronized frames from 3 side cameras are 

shown in (a). The detected vehicles on side views and the inferred vehicles on top view are shown in (b) and (c). The top-view 

vehicles are inferred by the corresponding detections with the maximum probabilities, which are the green boxes in (b). 

Table 1. Frequently Used Notations 

 Description 

𝑰𝑘
𝑡  The 𝑡𝑡ℎ RGB frame from side view 𝑘.  

𝑮𝑡 The 2-D binary ground-plane grid of cells.  

𝑿𝑡 The 1-D ground-truth Boolean occupancy vector. 

𝑫𝑡 The dimension-reduced input vector. 

�̂�𝑡 The estimated ground-plane occupancy vector. 

𝑹𝑖
𝑡 The 𝑖𝑡ℎ MER on the ground plane.  

𝑯𝑘 The homography between 𝑘𝑡ℎ side view and ground plane. 

𝑪𝑖,𝑗
𝑡  The 𝑗𝑡ℎ foreground cells in 𝑹𝑖

𝑡 on the ground plane.  

𝑷𝑖,𝑗,𝑘
𝑡  The projection of top-left corner 𝑪𝑖,𝑗

𝑡  in 𝑹𝑖
𝑡 at side view 𝑘. 

𝑨𝑖,𝑗,𝑘,𝑙
𝑡  The 𝑙𝑡ℎ bounding box with bottom edge centered at 𝑷𝑖,𝑗,𝑘

𝑡 .  

𝑓𝝎(∙) The function that represents the MVRPN.  

ℱ(∙) The fine-tuned pre-trained deep CNN classification.  

*Note: 𝑹𝑖
𝑡 , 𝑪𝑖,𝑗

𝑡  and 𝑨𝑖,𝑗,𝑘,𝑙
𝑡  are 4-element vectors that represent the 

selected rectangular bounding boxes with the form [𝑥min 𝑦min 𝜔 ℎ]. 

plane from side-view images. A multi-view ROI inference is 

then used to obtain the probability of the deduced ROIs being 

a vehicle. 

Consider a camera network composed of 𝐶  side-view 

cameras and 1 top-view camera, where each camera can have 

different resolution. The top-view camera is used to capture 

the ground-truth information from ground plane with less 

occlusion for MVRPN and to quantify the performance of the 

proposed algorithm; a top-view camera is not necessary for 

field implementation of a trained system. The 𝑡𝑡ℎ RGB frame 

captured from side-view camera 𝑘 is denoted as 𝑰𝑘
𝑡  with size 

equal to 𝑁𝑘 ×𝑀𝑘 × 3 , where 𝑘 ∈ {1,2, … , 𝐶} . The large 

dimension of the input 𝑰𝑘
𝑡  increases the unknown training 

parameters and makes the MVRPN computationally hard to 

converge [24]. Hence Principle Component Analysis (PCA) 

[25] is used to generate 𝑫𝑘
𝑡 , a 𝑛𝑘 dimensional column vector 

from 𝑰𝑘
𝑡 , where 𝑛𝑘 ≪ 𝑁𝑘 ∙ 𝑀𝑘 ∙ 3. In this study, we set 𝑛𝑘 =

500 . From the top-view camera, the 𝑡𝑡ℎ  𝑁𝐺 ×𝑀𝐺 × 3 

ground-plane frame is captured. A foreground binary mask is 

then obtained by binary pixel-wise labeling of the ground-

plane frame into the vehicle and non-vehicle class. The binary 

mask of the ground-plane frame is subsampled into a 
𝑁𝐺

𝑚
×

𝑀𝐺

𝑚
 

grid of cells, where 𝑚 is a hyper parameter to adjust the size 

of grid of cells while ensuring its aspect ratio is identical to 

the ground-plane frame. We set 𝑚 = 20 , and the total 

number of cells is 𝑁 =
𝑁𝐺

𝑚
×

𝑀𝐺

𝑚
. We denote the grid of cells 

as a 2-D binary matrix 𝐺𝑡 , where the matrix element with 

value equal to 1 represents the corresponding cell is occupied 

by a vehicle. By concatenating columns of 𝐺𝑡 , the 𝑁 × 1 

ground-truth Boolean occupancy vector is obtained. We 

denote occupancy vector as 𝑿𝑡, where 𝑿𝑡 = {𝑋1
𝑡 , 𝑋2

𝑡 , … 𝑋𝑁
𝑡 }𝑇. 

Note that the superscript 𝑡 of those notations is the index into 

the set of captured frames. 

2.1. Multi-View Region Proposal Network (MVRPN) 

After the PCA procedure, the input column vector 𝑫𝑡 =
{𝑫1

𝑡 , 𝑫2
𝑡 , … , 𝑫𝑐

𝑡 }𝑇  of the MVRPN is obtained, where 𝑫𝑡  is 

composed of 𝐶 dimension-reduced vector of frames captured 

from different side-view cameras at the same time. Given 𝑫𝑡, 

a Multi-Layer Perceptron (MLP) architecture, MVRPN, is 

utilized to estimate the ground-plane occupancy vector, �̂�𝑡 =

{�̂�1
𝑡 , �̂�2

𝑡 , … , �̂�𝑁
𝑡 }

𝑇
. In the proposed system, we assume that the 

number of cells occupied by vehicle on the ground plane is 

less than those corresponding to background. Therefore, due 

to the imbalanced vehicle instances, the training process of 

MVRPN suffers from the bias problem [26]. To alleviate this 

issue, the loss function 𝓛 in training the MVRPN is set as: 

 

𝓛𝝎(𝑿
𝑡 , �̂�𝑡) =

{
 
 

 
 𝛼

2𝑁
∑[�̂�𝑖

𝑡–𝑋𝑖
𝑡]
2

𝑁

𝑖=1

, if 𝑋𝑖
𝑡 = 1

1

2𝑁
∑[�̂�𝑖

𝑡–𝑋𝑖
𝑡]
2

𝑁

𝑖=1

, otherwise

           (1) 

where 

�̂�𝑡 = 𝑓𝝎(𝑫
𝑡) = {�̂�1

𝑡 , �̂�2
𝑡 , … , �̂�𝑁

𝑡 }
𝑇
                   (2) 

(a) Synchronized Frames

MVRPN

(c) Inferred Top-View 

Vehicles

Multi-View 

ROI 

Inference

(b) Detected Side-View Vehicles

�̂�𝑡

ℱ 𝑨𝑖,𝑗,𝑘,𝑙
𝑡 , 𝑰𝑘

𝑡

𝑓𝝎 𝑫𝑡    
𝑗,𝑘,𝑙

ℱ 𝑨𝑖,𝑗,𝑘,𝑙
𝑡 , 𝑰𝑘

𝑡

𝑰1
𝑡

𝑰2
𝑡

𝑰 
𝑡

𝑫2
𝑡

Top view

𝑿𝑡

PCA
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Fig. 2. The probability assignment process. The ground-plane 

locations of MER and its foreground cell are shown in (a). 

The corresponding projection of top-left corner of foreground 

cell is shown at each side view. The red bounding box is 

assigned the maximum cell probability across all side views. 

The loss function 𝓛𝝎(𝑿
𝑡 , �̂�𝑡) is the weighted Mean Squared 

Error (WMSE) between the estimated �̂�𝑡  and the ground 

truth 𝑿𝑡 . MVRPN is denoted as 𝑓𝝎(𝑫
𝑡) , where 𝝎  are the 

MVRPN parameters to be learned, and �̂�𝑡  is the output of 

MVRPN. The penalization weight 𝛼 adaptively applies more 

penalty to the computed WMSE when MVRPN classifies a 

foreground cell as background. In this study, we set 𝛼 = 5.  

2.2. Multi-View ROI Inference 

After estimating the occupancy vector �̂�𝑡, a set of candidate 

ROIs, which are Minimum Enclosing Rectangles (MERs) to 

enclose foreground cells block, are generated. In this paper, 

the 𝑖𝑡ℎ MER of �̂�𝑡 is denoted as 𝑹𝑖
𝑡, where 𝑖 ∈ {1, 2, … ,𝑀}, 

and 𝑀 is the total number of MERs on the ground plane. The 

𝑗𝑡ℎ foreground cells in 𝑖𝑡ℎ MER is denoted as 𝑪𝑖,𝑗
𝑡 , where 𝑗 ∈

{1, 2, … , 𝑃} and 𝑃 is the number of foreground cells within 

𝑹𝑖
𝑡. However, since some MERs are false positives (FPs), a 

multi-view ROI inference is leveraged to remove those FPs. 

For this purpose, a set of homography matrices are estimated 

by using RANSAC and Levenberg-Marquardt algorithms 

[27], where a set of red markers shown in Fig. 2 are used to 

generate the corresponding interest points. The homography 

matrix that represents the relationship between 𝑘𝑡ℎ side view 

and the ground plane is denoted as 𝑯𝑘, where 𝑘 ∈ {1,2, … , 𝐶} 
and 𝐶  is the number of side-view cameras. From the 

estimated homography matrices, the top-left corner of 𝑪𝑖,𝑗
𝑡  in 

every MER is projected to each side view. We denote the 

projected pixel of the top-left corner of 𝑪𝑖,𝑗
𝑡  in side view 𝑘 as 

𝑷𝑖,𝑗,𝑘
𝑡 . A set of bounding boxes are then generated according 

to the projected pixels, where each pixel associates with 𝐿 

multi-scale-multi-aspect-ratio bounding boxes. The bottom 

edge of each bounding box is centered at the corresponding 

projected pixel [18]. We denote the 𝑙𝑡ℎ bounding box whose 

bottom edge centered at the 𝑷𝑖,𝑗,𝑘
𝑡  as 𝑨𝑖,𝑗,𝑘,𝑙

𝑡 , where 𝑙 ∈

{1,2, … , 𝐿}  and 𝐿  is the total number of bounding boxes 

associated with 𝑷𝑖,𝑗,𝑘
𝑡 . In this work, bounding boxes with 3 

different scales and 3 different aspect ratios are used, and 

hence 𝐿 = 9 for each projected pixel. AlexNet, a pre-trained 

deep CNN ℱ(𝑨𝑖,𝑗,𝑘,𝑙
𝑡 , 𝑰𝑘

𝑡 ) is fine-tuned by transfer learning to 

assign the probability to each bounding box. The maximum 

probability of the bounding box being vehicle is assigned to 

the MER 𝑹𝑖
𝑡 on the ground plane as:  

 

Pr(𝑹𝑖
𝑡|𝐺𝑡) =    

𝑗,𝑘,𝑙
ℱ(𝑨𝑖,𝑗,𝑘,𝑙

𝑡 , 𝑰𝑘
𝑡 )                   (3) 

 

The probability assignment process is illustrated in Fig. 2, 

where 𝑨2,1,1,2
𝑡  is assigned the maximum probability and the 

false positive MER 𝑹1
𝑡  is eliminated by multi-view ROI 

inference. The state 𝑆(𝑹𝑖
𝑡|𝐺𝑡) of the MER 𝑹𝑖

𝑡  is estimated 

using probability thresholding as:  

 

𝑆(𝑹𝑖
𝑡|𝐺𝑡) = {

0, if Pr(𝑹𝑖
𝑡|𝐺𝑡) ≤ 𝑎

1,                     otherwise
                (4) 

 

where 𝑎 ∈ [0,1] is the probability threshold. The threshold 𝑎 

is determined such that the prediction results yield the highest 

performance in validation set. The proposed system recalls 

𝑹𝑖
𝑡  as the vehicle when 𝑆(𝑹𝑖

𝑡|𝐺𝑡) = 1  and eliminates 𝑹𝑖
𝑡 

when 𝑆(𝑹𝑖
𝑡|𝐺𝑡) = 0. 

3. EXPERIMENTS 

In this section, we present experimental results of the 

proposed automatic multi-camera vehicle detection system. 

The experiments are conducted on real-traffic image data that 

is captured from a roadway at Richardson, TX, USA.  

3.1. Data Preparation 

 

Fig. 3. The multi-camera network setup. Note: location 1, 2, 

3 are side-view cameras, and location 4 is top-view camera.  

The synchronized image data is captured from 4 cameras as 

shown in Fig. 3. The captured frames are sampled such that 

the number of frames with vehicles are equal to those without 

vehicles. The remaining 9960×4 frames are split into the ratio 

3:1:1 correspondingly to training, validation and test sets. For 

MVRPN training, the synchronized dimension-reduced 

frames of 3 side cameras are used as inputs. The target top-

view frames are labeled as pixel-wise binary masks, where 

the positive values (+1) indicate the vehicle and the negatives 

(0) indicate the background on the ground plane. Note that 
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the training samples are input into the MVRPN randomly 

rather than chronologically. For CNN training, the ground-

truth bounding boxes are labeled at 3 side views, and image 

patches are then extracted by applying Edge Boxes [28]. The 

extracted image patches whose Intersection over Union (IoU) 

with a ground-truth bounding box greater than 0.7 are treated 

as positives; IoU less than 0.3 are treated as negatives; and 

the rest are ignored. The ratio of the positive samples to the 

negative samples is set to 1:2. 

3.2. Model Training Configuration 

All the experiments are performed using a desktop with Intel 

(R) Quad-Core (TM) i5-7400 CPU@3.0GHz Processor, 8GB 

RAM, and NVIDIA GeForce GTX 1050Ti 4GB GPU.  

3.2.1. Multi-view region proposal network 

The MVRPN is trained by minimizing the loss function in 

Eq. 1. The synchronized side-view frames are RGB images. 

The 1500×1 MVRPN input vector is obtained by retaining 

the first 500 principal components for each of the 3 side views. 

Ground-truth occupancy vectors are obtained by subsampling 

300×600 ground-plane binary mask into 15×30 grid of cells. 

During training process, RMSProp [29] with 128 batch size, 

0.15 initial learning rate, 𝜂+ = 1.2, and 𝜂− = 0.5 is applied.  

3.2.2. Transfer learning prediction 

The fine tuning of the pre-trained AlexNet is implemented on 

MATLAB R2017b with AlexNet support package. During 

the training process, stochastic gradient descent (SGD) [30] 

with 128 batch size, 0.9 momentum, 10−4  initial learning 

rate, and 10−4 𝐿2 regularization is applied.  

3.3. Comparative Evaluation 

Table 2. Numeric Evaluation Results 

Camera deployments AP MODP 

𝑪 , ,  0.7849 0.7089 

𝐶1,2 0.6087 0.6526 

𝐶1,  0.5989 0.6554 

𝐶2,  0.6761 0.6722 

𝐶1 0.4401 0.6175 

𝐶2 0.5124 0.6287 

𝐶  0.4673 0.6208 

*Note: 𝐶𝛼,𝛽,𝛾 represents utilization of side camera 𝛼, 𝛽, and 𝛾. 

We evaluate the multi-camera vehicle detection system on 

1992 top-view test images. To our best knowledge, there is 

no published dataset about multi-camera vehicle detection. 

The feature extracted in the existing multi-camera pedestrian 

detection algorithm is not applicable in this paper [17, 21-23]. 

Hence, we benchmark the performance of the multi-camera 
vehicle detection system by deploying different camera 

combinations. For the fixed IoU, the system is evaluated by 

Average Precision (AP) [31] and Multiple Object Detection 

Precision (MODP) [32]. The detected bounding boxes are  

 
Fig. 4. Evaluation curves. The Precision-Recall curve is 

shown in (a). The MODA curve is shown in (b).  

considered as true positives when the IoUs exceed 0.55. The 

precision-recall curve is shown in Fig. 4(a). For the varying 

IoUs, Multiple Object Detection Accuracy (MODA) curve 

[32] is shown in Fig. 4(b). The evaluation results of AP and 

MODP are shown in Table 2, where the camera deployment 

𝐶1,2,  achieves the best performance (0.7849 AP and 0.7089 

MODP) among all variations. The utilizations of 2 side-view 

cameras achieve better performances than single camera 

deployments. Such numeric evaluation results indicate that 

the performance of the multi-camera vehicle detection system 

increases when more side-view cameras are deployed. 

3.4. Visualization Results 

 
Fig. 5. Ground-plane detection results. Red bounding boxes 

are detections, and green bounding boxes are ground truths.  

Examples of vehicles detected on the ground plane using 

𝐶1,2,  are shown in Fig. 5. The system detects the vehicles 

with variant sizes, e.g. the white sedan vs. the yellow SUV in 

Fig. 5(a). The partially-observed black SUV with smaller size 

than regular vehicle is also detected in Fig. 5(a). However, 

the detected bounding box of the yellow vehicle at Fig. 5(a) 

is not of optimal shape and size, and the partially-observed 

vehicle at right boundary of Fig. 5(b) is not detected.  

4. CONCLUSION 

In this paper, a multi-camera vehicle detection system with a 

MVRPN/CNN pipeline is presented. The proposed system 

detects partially and severely occluded vehicles in field traffic 

scenes. In future investigations, a multi-view bounding-box 

regression will be embedded into the pipeline to optimize the 

bounding-box predictions. A vehicle detection system which 

can utilize temporal video frames will be developed to 

address vehicle tracking-related challenges. In addition, the 

optimal locations to place side cameras will also be studied.  
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