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ABSTRACT

This paper proposes an online approach to the singing
voice separation problem. Based on a combination of one-
dimensional convolutional layers along the frequency axis
and recurrent layers to enforce temporal coherency, state-of-
the-art performance is achieved. The concept of using deep
features in the loss function to guide training and improve the
model’s performance is also investigated.

Index Terms— source separation, online, convolutional
neural networks, deep feature losses

1. INTRODUCTION

Audio source separation is a key research topic for both the
music information retrieval and speech processing communi-
ties. With applications ranging from automatic speech recog-
nition to automatic music transcription or lyrics alignment, it
has attracted a lot of attention in recent years.

Algorithms based on Non-negative Matrix Factorization
(NMF) have been widely used in source separation [1]. Al-
though interesting results can be achieved by such methods,
for instance when the separation is informed [2], algorithms
based on deep neural networks have been found to deliver
better performance [3].

Fully-connected feed-forward networks have been ap-
plied successfully to source separation by predicting the
separated sources spectra one frame at a time, with the neigh-
bouring frames stacked together to account for temporal
context [3]. Recurrent Neural Networks (RNNs) and more
specifically Long-Short-Term-Memory (LSTM) [4] networks
have been proposed to better model long term temporal de-
pendencies, leading to significantly better results in source
separation [3, 5]. In [6], a skip-filtering connection is used in
order to predict a time-frequency soft mask while still using
the target spectrogram in the computation of the objective
function, thus removing the need to explicitly define the ideal
target mask.

Convolutional Neural Networks (CNNs) have been used
extensively in computer vision [7] and have been employed
recently to tackle the source separation task [8, 9, 10, 11].
They all present an encoder-decoder structure where, from
the input spectrogram, the encoder takes care of successively

computing feature maps and downsampling them, while the
decoder progressively upsamples the feature maps back to the
dimensionality of the original space. The advantage of us-
ing such a bottleneck structure is that the receptive field of
the computed feature maps increases with depth, so the lay-
ers can learn meaningful features at different time and fre-
quency scales. In the U-Net [9], feature maps at the output
of convolutional layers on the downsampling side are con-
catenated with the feature maps at the same resolution on
the upsampling side, in order to allow more layer interactions
and reuse features previously computed without loss of infor-
mation from the successive downsampling operations. In the
MMDenseNet [10], a multi-band structure is proposed where
each frequency band is processed by a separate CNN along
with a full-band one before combining the results. This work
is extended in [12] where the MMDenseNet architecture is
combined with LSTM blocks. A one-dimensional adapta-
tion of the U-Net architecture working directly on the time-
domain samples was also proposed in [13]. The concept of
improving network performance by using deep features in
the loss function was investigated previously in the context
of end-to-end speech denoising in [14].
In this paper, we present an online method for singing voice
separation based on a convolutional and recurrent neural net-
work architecture, the Online Recurrent U-Net (OR-U-Net).
By using one-dimensional convolutional layers along the fre-
quency axis together with Gated Recurrent Unit (GRU) layers
[15] to enforce temporal coherency, we are able to separate
the input mixture spectrogram in an online manner. To fur-
ther improve the performance of the system, we train a sepa-
rate CNN to be used as a loss network [16], and incorporate
the computed deep features in the objective function.
The paper is organized as follows. The singing voice separa-
tion problem and the basic notation are detailed in Sec. 2. The
proposed neural network architecture is described in Sec. 3
and training using deep feature losses is explained in Sec. 4.
Experimental results are shown in Sec. 5 before concluding
in Sec. 6.

2. PROBLEM STATEMENT

In the present work, a Short Time Fourier Transform (STFT)
is applied to each channel of the stereo mixture signal and
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the processing is done in the time-frequency domain. Let the
singing voice, background music, and input mixture stereo
magnitude spectrograms at time-frame t be given respectively
by Vt, Bt, Xt. We define the task of online singing voice
separation as finding the time-varying filters MVt

and MBt
,

also called masks, so that:

V̂t = MVt
�Xt (1)

B̂t = MBt �Xt (2)

where � is the Hadamard product and estimates are denoted
by .̂ The time-domain signals of the separated sources are
then reconstructed by applying the inverse STFT with the es-
timated magnitude spectra and the phase of the input mixture.

We aim to train a single neural network to compute the
two time-varying masks, so that (MVt ,MBt) = f (Xt,ht−1)
where ht−1 contains information about the past time-frames,
akin to a hidden state.

3. ONLINE RECURRENT U-NET

In the following, the U-Net architecture described in [9] is
modified and adapted to the task of online singing voice sep-
aration. In the aforementioned architecture, two-dimensional
convolutional layers are applied to the input spectrogram di-
rectly. In our case, to be able to perform the source separa-
tion in an online manner, we use a similar encoder-decoder
network architecture to the U-Net but with one-dimensional
convolutional layers computing feature maps along the fre-
quency axis only. To enforce temporal coherency between
successive time-frames, we use recurrent layers in the bottle-
neck. The resulting network therefore outputs a mask at time-
frame t only as a function of the input mixture spectrogram
at time-frame t and the hidden states of the recurrent layers,
in accordance with the problem statement of Sec. 2. In or-
der to avoid defining explicitly what the target masks should
be during training, we define the spectrogram reconstruction
loss function as [6]

LR =
1

T

T∑
t=1

(∥∥∥Vt − V̂t

∥∥∥
1
+
∥∥∥Bt − B̂t

∥∥∥
1

)
=

1

T

T∑
t=1

(‖Vt −MVt
�Xt‖1 + ‖Bt −MBt

�Xt‖1)

(3)

where T is the number of time-frames in the sequences used
during training and the L1 norm is computed as the mean ab-
solute value of the array elements.

To train our network, we use stereo audio data sampled
at 44.1 kHz. The STFT is computed using a window size of
2048 samples and a hop size of 512 samples. Patches of 128
time-frames are extracted, resulting in an input array of size
(128, 1025, 2) to the network. The input magnitude spectro-
grams are standardized according to the training set statistics,

i.e. each frequency bin is zero-centered and scaled according
to the mean and standard deviation computed over the whole
training dataset.

Conv1D k4s1 Conv1D k4s2 Conv1D k3s1

NN Interp. Conv1D k2s1 Conv1D k1s1

Fig. 1. Structure of the OR-U-Net neural network architecture proposed
in this paper. k and s denote respectively the kernel size and stride of the
convolution. Dashed lines indicate a concatenation operation.

3.1. Architecture details

The network architecture is detailed in Fig. 1. The imple-
mentation starts with a zero-padded unit-stride 1D convolu-
tion layer with a kernel size of 4, which adapts the number
of frequency bins from 1025 to 1024. After that, the encoder
consists in alternating a downsampling layer and a convolu-
tional layer as in [11], although we use strided 1D convo-
lutions with a kernel size of 4 and a stride of 2 instead of
max-pooling. The feature maps computed at the output of the
unit-stride convolutional layer at each frequency resolution
are concatenated with the feature maps at the same resolution
on the decoder side. The number of computed feature maps
is doubled at each downsampling layer, to reach a maximum
of 128.

At the bottom of the encoder, the last convolutional layer
outputs a reduced number of feature maps (e.g. 16) so that we
can flatten the feature maps computed at each time frame into
a single vector. The flattened feature maps are fed to 2 GRU
layers whose hidden layers are zero-initialized at the start of
the sequence. The resulting vectors at each time-frame are
then reshaped into feature maps at the appropriate frequency
resolution before being passed on to the decoder, as shown in
Fig. 2.

Fig. 2. Structure of the recurrent block at the bottleneck of the proposed
model.

Each layer of the decoder is an upsampling stage consist-
ing in an interpolation followed by a convolution, as described
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in Sec. 3.2. After having upsampled the frequency resolution
to 1024 bins, a zero-padded unit-stride convolution layer with
a kernel size of 2 is used to recover the original frequency
resolution. The rectified linear unit (ReLU) activation func-
tion is used after every layer in both the encoder and decoder.
Finally, the network ends with a feature map averaging layer
followed by a sigmoid activation to restrict the values of the
masks to the range [0, 1].

3.2. Upsampling and checkerboard artifacts

To upsample the feature maps on the decoder side and re-
cover the original dimensionality, many networks use trans-
posed convolutional layers [9, 10]. These layers are based on
the idea that the convolution operation’s backward pass is the
transposed operation of the forward pass, allowing to go from
the reduced dimensional space to the original space [17].

According to [18], using a transposed convolution layer
can lead to strong checkerboard artifacts in image generation
networks, as the kernel passes over some indexes more times
than others in a periodic way. To counter these artifacts, they
suggest using a simple interpolation technique followed by
a standard convolutional layer that keeps the dimensionality
intact. Similar artifacts were observed in [13] in the case of
source separation on raw audio samples. They propose a sim-
ilar workaround technique, interpolation followed by a con-
volution operation, with the interpolation being a learned up-
sampling function.

The learned upsampling layer of [13] having nearest
neighbour and linear interpolations as edge cases, we con-
ducted initial tests with these two methods only. With a dou-
bling of the number of features along the frequency axis at
each upsampling layer, nearest neighbour consists in repeat-
ing each frequency bin once. This seems to indicate that near-
est neighbour interpolation might lead to more abrupt changes
in the frequency content, a cause of musical noise, while the
smoothing provided by linear interpolation might be more
pleasant to the ear. In practice however, both lead to similar
perceptual quality and objective evaluation metrics. Informal
listening tests by professional audio engineers tended to indi-
cate a slight preference for the nearest-neighbour interpolated
versions as they exhibited less interference from the other
source, hence its use in our final implementation.

4. TRAINING WITH DEEP FEATURE LOSSES

Taking inspiration from the computer vision field [19, 16], we
train our source separation network using deep feature losses.
The goal is to compare the activations of different layers in a
pre-trained loss network that is applied to both the predicted
and target sources. In the context of magnitude spectrograms
and if the loss network is a CNN with an encoder structure, it
means that minimizing the differences between feature maps

extracted at different depths will minimize differences in local
patterns corresponding to different time and frequency scales.

4.1. Designing the loss network

In computer vision, there are standard CNN architectures pre-
trained on large-scale datasets for classification tasks, such as
VGG-19 [7], with the layers of such networks representing
increasing levels of abstraction [19]. In the audio processing
community, such standard pre-trained networks do not exist
and we need to design and train the loss network.

Considering the OR-U-Net is an online architecture, the
only temporal coherency enforced from one frame to the next
is through the use of GRU layers at the bottleneck of the net-
work. By training a loss network that makes use of 2D con-
volutions, we are able to extract both frequency patterns and
temporal patterns. Combining different losses corresponding
to different depths of the loss network should be able to steer
the GRU layers towards learning to respect meaningful tem-
poral patterns at different scales.

Therefore, rather than training the loss network on a clas-
sification task as in [14], we use a more straightforward ap-
proach by training the loss network on a similar task, offline
singing voice separation, and the same database as the OR-U-
Net. To do so, we use the U-Net architecture described in [9],
with a few adaptations: the first and last layers are adapted
to work with spectrograms of size (128, 1025), and both the
singing voice and background music masks are predicted by
the same network, using loss function (3).

4.2. Designing the loss

Let φi(Z) be the feature maps at the output of the ith layer of
the loss network for an input Z. We define the feature loss at
the ith layer as

Lφi
=
∥∥∥φi(V)− φi(V̂)

∥∥∥
1
+
∥∥∥φi(B)− φi(B̂)

∥∥∥
1

(4)

where the L1 norm is computed as the mean absolute value
of the array elements. The total loss used during training is
therefore

L = w0LR +

N∑
i=1

wiLφi
(5)

with N the total number of deep features to use in the loss
function. w0 represents the proportion of direct frequency-
bin reconstruction error in the loss function. The weights wi,
for i ≥ 1, can be chosen depending on whether the recon-
struction of long term or short term temporal patterns should
be emphasized when training the GRU layers.

5. EVALUATION

To evaluate our singing voice separation model, we used the
standard Blind Source Separation (BSS) metrics Signal-to-
Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR)
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and Signal-to-Artifacts Ratio (SAR) [20]. The values were
computed with the mir-eval implementation [21]. To avoid
strong outliers, the audio tracks were partitioned into seg-
ments of 5 seconds, with the very low energy segments being
discarded.

To train our model, we used the 50 songs of the DSD100
training set [22], 50 songs from the MedleyDB database [23]
and 30 songs from the CCMixter database [24]. Out of the
total 130 songs, 20 were randomly assigned to the validation
set. All models are evaluated on the 50 songs of the test set of
DSD100.

5.1. Implementation Details

We compare two versions of the proposed method: OR-U-
Net, the network architecture described in Sec. 3 trained us-
ing the L1 cost function (3), and OR-U-Netdf , the same ar-
chitecture trained using the deep feature losses cost function
(5) withN = 4 deep features and the decreasing weight strat-
egy wi = N − i + 1, normalized so that

∑N
i=0 wi = 1. We

evaluate them against two competing methods: the adapted
U-Net architecture used as a feature loss network to train
OR-U-Netdf (see Sec. 4.1), and an LSTM network inspired
by [5] with 3 LSTM layers of 256 units and a final fully-
connected layer. Contrary to [5], the LSTM layers are not
bi-directional in order to use this network as a baseline for on-
line singing voice separation. Both of these competing meth-
ods are trained to output the two stereo masks directly using
the L1 cost function of (3). All four methods are evaluated us-
ing the masks directly at the output of each network, without
any post-processing applied.

During training, for all four methods, we use the RMSprop
optimizer with a learning rate of 0.0001 and a batch size of
10. Training is stopped when no improvement is observed
on the validation set for 30 epochs and the model with the
best validation loss is selected. Data augmentation is used,
with random scaling, panning, low-pass/high-pass filtering
and eventual reverberation of the individual sources before
summing them to build the input mixture.

5.2. Results

Median BSS evaluation metrics measured on the test set of
the DSD100 database are presented in Table 1. The pro-
posed OR-U-Net model trained without deep feature losses
achieves performance on a par with the U-Net. The higher
vocals and background SIR scores indicate a stronger separa-
tion with less interference is achieved through the U-Net, but
the OR-U-Net achieves best vocals SAR performance overall
and exhibits similar SDR scores to the U-Net. It is interest-
ing to note that the OR-U-Net achieves stronger performance
than the baseline LSTM online model on all criteria.

The OR-U-Netdf model achieves best SDR and SIR over-
all performance on the vocals separation task, with scores sig-
nificantly higher than both the base OR-U-Net model and the

U-Net loss network used for its training. However, with a
strong SAR but low SIR score, the OR-U-Netdf model shows
more mitigated performance on the background separation
task.

These results suggest that even when using a loss net-
work with limited capacity trained on a similar task with the
same database, it is indeed possible to significantly change
the learning behaviour of a model, making the deep feature
losses technique very promising. In this case, with the de-
creasing weight strategy used in the loss function, we believe
that by enforcing the correct reconstruction of local temporal
patterns the GRU layers learned weights that are more effi-
cient at handling short-term temporal context.

Vocals Background
Method SDR SIR SAR SDR SIR SAR
LSTM [5] 2.83 6.89 6.02 9.48 12.39 12.99
U-Net [9] 3.21 8.34 5.86 9.81 13.42 12.98
OR-U-Net 3.14 7.41 6.20 9.87 13.25 12.99
OR-U-Netdf 3.70 9.52 5.80 9.65 11.84 14.16

Table 1. Median BSS evaluation metrics in dB for singing
voice separation on the test set of the DSD100 database. Best
performance is shown in bold for each metric.

6. CONCLUSION

In this paper, we have presented a novel online approach to
the singing voice separation problem. Using one-dimensional
convolutional layers to form an encoder-decoder structure
along the frequency axis together with GRU layers along the
time axis, we achieve state-of-the-art performance compared
to a CNN architecture using 2D convolutions working jointly
on the time and frequency axes. Furthermore, we showed
that even when using a loss network with limited capac-
ity, deep feature losses can be used to improve the model’s
performance significantly.

7. ACKNOWLEDGEMENTS

The author would like to thank Clement Godard for the many
fruitful discussions and helpful suggestions.

8. REFERENCES

[1] C. Févotte, E. Vincent, and A. Ozerov, Audio Source
Separation, chapter Single-channel audio source separa-
tion with NMF: divergences, constraints and algorithms,
Springer, 2018.

[2] R. Hennequin, J. J. Burred, S. Maller, and P. Lev-
eau, “Speech-guided source separation using a pitch-
adaptive guide signal model,” IEEE International Con-

3755



ference on Acoustics, Speech and Signal Processing
(ICASSP), 2014.

[3] F. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller,
“Discriminatively trained recurrent neural networks for
single-channel speech separation,” IEEE Global Con-
ference on Signal and Information Processing (Global-
SIP), 2014.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[5] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp,
N. Takahashi, and Y. Mitsufuji, “Improving mu-
sic source separation based on deep neural networks
through data augmentation and network blending,”
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2017.

[6] S. I. Mimilakis, K. Drossos, J. Santos, G. Schuller,
T. Virtanen, and Y. Bengio, “Monaural singing voice
separation with skip-filtering connections and recur-
rent inference of time-frequency mask,” arXiv preprint
arXiv:1711.01437v2, 2018.

[7] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556v6, 2014.

[8] P. Chandna, M. Miron, J. Janer, and E. Gómez,
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[22] A. Liutkus, F.-R. Stöter, Z. Rafii, D. Kitamura, B. Rivet,
N. Ito, N. Ono, and J. Fontecave, “The 2016 signal
separation evaluation campaign,” International Confer-
ence on Latent Variable Analysis and Signal Separation
(LVA/ICA), pp. 323–332, 2015.

[23] R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Can-
nam, and J. P. Bello, “MedleyDB: A multitrack dataset
for annotation-intensive MIR research,” 15th Interna-
tional Society for Music Information Retrieval (ISMIR)
Conference, 2014.

[24] A. Liutkus, D. Fitzgerald, and Z. Rafii, “Scalable audio
separation with light kernel additive modelling,” IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015.

3756


		2019-03-18T11:01:43-0500
	Preflight Ticket Signature




