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ABSTRACT

The goal of speech super-resolution (SSR) or speech bandwidth
expansion is to generate the missing high-frequency components for
a given low-resolution speech signal. It has the potential to improve
the quality of telecommunications. We propose a new method for
SSR that leverages the generative adversarial networks (GANs) and
a regularization method for stabilizing the GAN training. The gen-
erator network is a convolutional autoencoder with 1D convolution
kernels, operating along time-axis and generating the high-frequency
log-power spectra from the low-frequency log-power spectra in-
put. We employ two recent deep neural network (DNN) based
approaches to compare them with our proposed method, includ-
ing both objective speech quality metrics and subjective perceptual
tests. We show that our proposed method outperforms the baseline
methods in terms of both objective and subjective evaluations.

Index Terms— generative adversarial networks, speech super-
resolution, artificial speech bandwidth extension

1. INTRODUCTION

Speech enhancement is one of the most studied problems in the
speech processing field. The primary goal of speech enhancement is
to increase the quality and intelligibility of the input speech signal.
The majority of work in this field focuses on removing the back-
ground noise or reverberation, where some of these works focus on
generating the missing high-frequency content to increase the resolu-
tion of the speech signal, which is called artificial speech bandwidth
expansion or speech super-resolution (SSR) in the literature. In the
rest of this paper, we refer to this problem as SSR.

SSR has applications in many practical scenarios and has a po-
tential for improving the quality of life for people. A typical example
is the public switched telephone network (PSTN), where the band-
width is still limited to a narrowband (300-3400 Hz). In a study [1], it
was shown that the users favor high-resolution speech signal in tele-
phony compared to narrowband. Kepler et al. [2] pointed out that
the narrowband range is challenging for the hearing impaired popu-
lation when communicating through telephony. In another study, Liu
et al. [3] showed that artificially increasing the resolution from nar-
rowband to wideband (up to 8 kHz) improves the speech recognition
rates for cochlear implant users.

In this work, we introduce a novel speech super-resolution neu-
ral network that employs adversarial training and a regularization
method to stabilize the adversarial training. We are motivated by the
success of adversarial training for the single image and video super-
resolution. The generator is a sequence-to-sequence convolutional
autoencoder network that accepts log power spectrogram (LPS) as
input and generates the corresponding high-frequency range LPS.

The work was done when SEE was an intern at Microsoft Research.

The filters in the convolutional layers are 1D, and they operate along
the time axis of the spectrogram. By adopting 1D kernels, we re-
duce the computational complexity for both training and inference.
The resulting system is light-weight with a real-time processing ca-
pability on mobile devices and consumer level CPUs. The training
procedure is as follows: First, we initialize the generator network by
training it with only a reconstruction loss for a few epochs. Then, we
train the framework using the adversarial loss in addition to weighted
reconstruction loss. During GAN training, we add a weighted gra-
dient penalty to discriminator loss in order to stabilize the process.
We use the Centre for Speech Technology Research (CSTR) Voice
Cloning Toolkit (VCTK) Corpus [4] for training our system. To
confirm the robustness against unseen speakers and recording con-
ditions, we evaluate our system using a completely different dataset
from our training set, namely the Wall Street Journal (WSJ0) corpus
[5]. We compare our method with baselines [6,7]. We show that our
method outperforms the baseline methods in terms of objective and
subjective evaluations. A set of examples is publicly available1.

The rest of the paper is organized as follows: Section 2 describes
the related works. Section 3 outlines the system overview, the neural
network framework. In Section 4, we describe the experiment details
and present the objective and subjective evaluation results. Section
5 concludes the paper.

2. RELATED WORK

The early works focused on estimating the spectral envelope of the
speech signal and model the mapping from narrowband to wideband
signals. These works relied on Gaussian mixture models (GMMs)
[8–10], hidden Markov models (HMMs) [11–14], and neural net-
works (NNs) [6, 7, 15–17] to be able to learn the transfer function
between the narrowband and wideband signals. Recently, the deep
learning based-methods [6, 7] outperformed these approaches.

Li et al. [6] proposed a DNN to predict the log-power spectro-
gram (LPS) of the wideband from the LPS of the narrowband. To ar-
tificially create the missing phase information, they flipped the phase
of the low-frequency band as that of the high-frequency band to re-
construct the time domain signal. They showed that their method
outperforms the GMM-based methods. Kuleshov et al. [7] proposed
to use the raw waveforms directly and introduced an end-to-end net-
work. They used a convolutional autoencoder network with mean-
squared error (MSE) objective function. Compared to signal pro-
cessing based methods, this method is more straightforward regard-
ing implementation since there is no pre-processing. However, it is
computationally expensive and might not be suitable for running on
the edge devices.

Generative adversarial networks (GANs) [18] are shown to be
powerful in image, video and speech generation tasks. In essence,

1
http://www.ece.rochester.edu/projects/air/projects/SSRGANc.html
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Fig. 1: The proposed speech super-resolution (SSR) system
overview during the test time. The short-time Fourier transform
(STFT) is applied to time domain signal x to obtain the log-power
spectra (LPS) XNB and the phase spectrogram XP . The narrow-
band (NB) LPS XNB is fed to SSR-GAN in order to obtain the
estimated high-frequency (HF) range LPS, and it is concatenated to
the NB LPS to obtain the wideband (WB) LPS X̂SR. The phase
of the HF range is artificially produced by flipping and repeating
the NB phase XP and adding a negative sign. Finally, the estimated
WB LPS and artificial phase are used to reconstruct the time-domain
signal ŷ by inverse STFT (ISTFT) and overlap-add.

GANs are a zero-sum game that contains multiple neural networks,
usually a generator, and a discriminator. The generator tries to de-
ceive the discriminator by generating fake but realistic data, while
the discriminator tries to distinguish between the real and fake data.
Although GANs yield impressive and realistic results, they suffer
from instabilities during training [19]. The researchers focused on
stabilizing the GAN frameworks by introducing regularizations [19–
23]. Some of these regularization methods add a penalty to the norm
of the gradients in order to stabilize the training [19, 21, 23].

GANs have been successfully applied to image and video super-
resolution [24, 25]. Since spectrograms are similar to images or
video frames, these studies encouraged us to investigate the adver-
sarial networks in the context of speech super-resolution.

Li et al. [26] proposed a speech bandwidth expansion method
using adversarial training recently. Their neural network (NN) pre-
dicts the Line Spectral Frequencies (LSF) and speech energy of the
high band (HB) from LSF, delta LSF and speech energy of the low
band signal. The generator and discriminator are fully connected
neural networks with four layers. The high-resolution speech signals
were synthesized by the EVRC-WB framework [27] and a synthesis
filterbank using the predicted speech parameters. Our method and
[26] both use GAN framework for SSR. However, our method di-
rectly generates the speech spectrograms and employs a regulariza-
tion method to stabilize GAN training, while [26] synthesizes speech
with a synthesis framework using the estimated LSF and energy pa-
rameters.

3. PROPOSED METHOD

In the following, we describe how our system works during infer-
ence. Let x be the time domain waveform of the narrowband speech.
First, the short-time Fourier transform (STFT) is applied to x. Then,
the log-power spectrogram (LPS) XNB and the phase spectrogram
XP are computed fromX . The high-frequency range LPS, X̂WB is
estimated from theXNB using the proposed generator network. The
original narrowband and the predicted high-frequency range LPSs
are concatenated to get the estimated wideband LPS XSR. We also
predict the highestC frequency bins of the narrowband spectrogram,
where C is called the offset parameter. During concatenation, the
narrowband spectrogram less than C frequency bins is concatenated
with the predicted high-frequency range. This way, we avoid dis-
continuities at the concatenation [6]. We follow Li et al. [6] to create
an artificial phase by flipping the narrowband phase and reverting the
sign. For the 2x super-resolution version, we concatenate this flipped

Table 1: Detailed parameters of the proposed network architectures.
K and N are the narrowband and the high-frequency range LPS
dimensions along the frequency axis, respectively. K is 129 and 65
for 2x and 4x super-resolution scales, respectively. N is 141 and 199
for 2x and 4x super-resolution scales, respectively.

Layers Activation Filter No Filter Size Strides Output Shape
The Generator Network

Input - - - - 32 × K
Conv LeakyReLU 256 (7, 1) (2, 1) 16 × 256
Conv LeakyReLU 512 (5, 1) (2, 1) 8 × 512
Conv LeakyReLU 512 (3, 1) (2, 1) 4 × 512
Conv LeakyReLU 1024 (3, 1) (2, 1) 2 × 1024
Conv LeakyReLU 512 (3, 1) (1, 1) 4 × 512
Conv LeakyReLU 512 (5, 1) (1, 1) 8 × 512
Conv LeakyReLU 256 (7, 1) (1, 1) 16 × 256
Conv LeakyReLU N (7, 1) (1, 1) 32 × N
Conv LeakyReLU N (9, 1) (1, 1) 32 × N

The Discriminator Network
Input - - - - 32 × (K+N)
Conv LeakyReLU 1024 (7, 1) (2, 1) 16 × 1024
Conv LeakyReLU 1024 (5, 1) (2, 1) 8 × 1024
Conv LeakyReLU 1024 (3, 1) (2, 1) 4 × 1024
Flatten 4096
FC LeakyReLU 2048 2048
FC Sigmoid 1 1
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Fig. 2: The proposed network architectures for the generator (mid-
dle) and the discriminator (right). Each rectangular block is a con-
volutional layer with structures color coded and detailed on the left
subfigure. Notations: BN - batch normalization layer, FC - fully con-
nected layer, LReLU - LeakyReLU activation, and PShuffle - pixel
shuffle or sub-pixel layer, LPS - log-power spectrogram.

phase with the narrowband phase to obtain an artificial phase X̂P of
the entire wideband signal. For the 4x super-resolution version, we
repeat the flipped phase three times. In the last step, we reconstruct
the time domain signal using the overlap-add method from the in-
verse STFT of estimated wideband LPS XSR and artificial phase
X̂P . The system overview is shown in Figure 1.

3.1. Network Architecture

The generator is a sequence-to-sequence model, which accepts the
narrowband LPS with T time steps and outputs the high-frequency
range LPS with T time steps. We use a common bottleneck autoen-
coder architecture described in [7]. The convolutional kernels are
1D, which operates on the time axis of the LPSs. Compared to 2D
kernels, the computational cost is much lower, permitting real-time
processing of the network on CPUs and mobile devices. We use
batch normalization (BN) layers after the convolutional layer fol-
lowed by leaky rectified linear units (LeakyReLU) activations with
a slope of 0.2, except for the output layer, where we use linear ac-
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tivation and do not use a BN layer. We employ sub-pixel (or pixel
shuffle) layers introduced in [28] for upsampling, which is shown
useful for image and video super-resolution.

The discriminator includes three convolutional layers that are
followed by two fully connected (FC) layers. We use LeakyReLU
activation with a slope of 0.2 in all layers, except for the output layer,
where we use a linear activation function. Since the BN layers lead
to instabilities during training in the discriminator network, which
is especially true if the discriminator loss is regularized [19, 23], we
do not use BN layers. The discriminator network receives the con-
catenated narrowband and high-frequency range LPSs as input. The
high-frequency range LPS could be coming directly from the data
distribution or generated by the generator network. The details of
both network architectures are shown in Table 1.

3.2. Training Objective Functions

First, we train the generator network with only a reconstruction loss
for several epochs to initialize. The generator is typically trained to
produce the overly smooth results after this initialization. To obtain
sharper and more detailed LPSs, we switch to using an adversar-
ial loss (GAN loss) in addition to the reconstruction loss. We use
log-spectral distance (LSD) (or log-spectral distortion) function as
our training objective. The LSD measures the distance between two
spectrograms in decibels, and it is mathematically defined as fol-
lows:

lLSD =
1

L

L∑
l=1

√√√√ 1

K

K∑
k=1

[XHR(l, k)−XSR(l, k)]2, (1)

where K is the number of frequency bins, and XHR and XSR are
the ground truth and estimated LPSs, respectively.

The original generative adversarial network (GAN) is a two
player, zero-sum (minimax) game between a generator and a dis-
criminator. We formulate this problem in the context of SSR, which
can be defined as follows:

min
θ

max
ψ

EP[logDψ(XHR)] + EQ[log(1−Dψ(Gθ(X
NB)))],

P : XHR ∼ p(XHR),

Q : XNB ∼ p(XNB),
(2)

where XHR is the high-resolution data (real data), XNB is the nar-
rowband data. Gθ(·) is the generator andDψ(·) is the discriminator,
where θ and ψ are the trainable parameters. P is the distribution of
real data and Q is the distribution of the narrowband data. The gener-
ator (Gθ(·)) handles the concatenation of narrowband and high-band
spectrograms. This notation can be simplified as follows:

min
θ

max
ψ

EP[logϕR] + EQ[log(1− ϕF )], (3)

where ϕR and ϕF are the discriminator output for real and fake data,
respectively.

We add a penalty on the weighted gradient-norms of the dis-
criminator as described in [23] to stabilize the GAN training. The
regularization term is described as:

Ω = EP[(1− ϕR)2‖OφR‖2] + EQ[ϕ2
F ‖OφF ‖2], (4)

where φ = σ−1(ϕ), and σ is the sigmoid activation used in generat-
ing the output of the discriminator. We add this term to the objective
function of the discriminator as follows:

lDIS = EP[logϕR] + EQ[log(1− ϕF )]− γ

2
Ω, (5)

where γ is the weight for the regularization term.
The generator loss is the weighted sum of the reconstruction loss

and the GAN loss, and defined as follows:

lGEN = EQ[− log(Dψ(Gθ(X
NB)))] + λlLSD, (6)

where lLSD is the objective function described in Equation 1 and λ
is the weighting parameter for the LSD loss.

4. EXPERIMENTS

We used the CSTR Voice Cloning Toolkit Corpus (VCTK) to train
our network, which is initially designed for training text-to-speech
(TTS) synthesis systems. The recordings are 16-bit WAV files with
48 kHz sampling rate and contain clean speech. There are a total of
109 English speakers with different accents, where each speaker ut-
ters 400 sentences. We used the utterances from six random speakers
as a validation set and used the rest for training the network. To cre-
ate our training pairs, we applied the band-limited sinc interpolation
method described in [29] to high-resolution signal in order to obtain
the downsampled version.

In order to evaluate the generalization ability of our network, we
employed another dataset for evaluation that has different speakers
and recording conditions than the VCTK corpus, namely the Wall
Street Journal (WSJ0) corpus. The sampling rate of the recordings is
16 kHz, where they contain natural background noise. In our objec-
tive evaluations, we use a random subset with 5000 samples (around
12 hours) from this dataset.

Our network was trained for 50 epochs using only the LSD loss
(Equation 1) with a learning rate of 10−4, and it was trained for
another 100 epochs using GAN plus LSD loss (Equation 6) with a
learning rate of 10−5. We determined the number of epochs experi-
mentally. The number of time-steps of our input and output spectro-
grams were set to 32. We used Adam optimizer to train the generator
network and RMSProp optimizer to train the discriminator network
with a mini-batch size of 64. The input and output LPSs were nor-
malized to have zero mean and unit variance; We calculated these
statistics from the training data and applied them during inference.
The K variable shown in Table 1 was 129 for 2x experiments and
65 for 4x experiments. The frequency offset value was calculated
according to the following formula:

C = floor(
K

10
) + 1, (7)

where K is the number of frequency bins in the input spectrogram.
The N variable shown in Table 1 was set to 141 and 199 for 2x and
4x super-resolution scales, respectively. We set the γ variable shown
in Equation 5 to 2.

We employed two baseline methods from existing works de-
scribed in Section 2. The first baseline is an STFT-based method
[6], which we name as BL1 through the rest of the paper. Since this
work only considers 2x SSR, we did not implement 4x SSR version.
The second baseline is raw waveform-based method [7], which we
name as BL2 through the rest of the paper. We adopted the code pro-
vided by the authors to reproduce the results for 2x and 4x SSR. We
name our proposed method as SSR-GAN.

4.1. Objective Metrics

We employed the LSD defined by Equation 1, segmental signal-
to-noise ratio (SegSNR) [30], and perceptual evaluation of speech
quality (PESQ) [31] objective metrics in order to evaluate and
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Table 2: The objective evaluation results for 2x and 4x SSR exper-
iments. Our method (SSR-GAN) outperforms the baselines for all
metrics. LSD HF shows the LSD value calculated only for the high-
frequency range, where LSD Full shows the LSD value calculated
for the whole spectrogram.

Scale Method LSD HF
(dB)

LSD Full
(dB)

SegSNR
(dB) PESQ

2x
BL1 [6] 9.32 7.06 15.73 4.21
BL2 [7] 10.56 7.64 14.96 4.19

SSR-GAN 8.20 5.95 19.64 4.32

4x BL2 [7] 16.20 14.96 8.24 2.89
SSR-GAN 12.90 10.24 13.01 3.40

2x 4x

GT

LSD

LSD
+

GAN

Fig. 3: Spectrogram examples for 2x and 4x are shown. The samples
are randomly selected from the WSJ0 corpus (unseen speakers). The
first row shows the ground truth high-frequency range spectrograms.
The second and third rows show the generated high-frequency range
spectrograms of the proposed network trained with only the LSD
loss (second rows) and with both LSD and GAN losses (third rows).

compare our method with the baseline methods. These metrics
are widely used in speech enhancement, and SSR works. PESQ
measures speech quality, and it is standardized by the International
Telecommunication Union Telecommunication Standardization Sec-
tor (ITU-T). SegSNR is the signal-to-noise (SNR) ratio, averaged
over segments of audio samples, and defined as follows:

SegSNR =
1

L

L∑
l=1

10log

∑N
n=1[x(l, n)]2∑N

n=1[x(l, n)− x̂(l, n)]2
, (8)

where L is the number of segments, and N is the number of data
points in the utterance. For SegSNR and PESQ, the higher value is
better; for LSD, the lower value is better.

4.2. Results

The objective evaluation results are shown in Table 2. Our method
outperforms both baselines in 2x and 4x SSR tasks with a good mar-
gin in terms of all of the three objective evaluation metrics. LSD val-
ues are improved by around 1.1 dB compared to BL1. For SegSNR,
the improvement is around 3.9 dB. There is a slight PESQ improve-
ment, which is around 0.1. The improvement of our method, com-
pared to BL2, is more noticeable in the 4x setting. The LSD im-
provements are around 3.3 dB and 4.7 dB for high-frequency range
and whole spectrum, respectively. The SegSNR is improved by
around 4.7 dB. Compared to the 2x scale, PESQ is improved sig-
nificantly, which is around 0.5.

Figure 3 shows the example spectrograms, where the first row
is the ground truth high-frequency range spectrogram, the second

2x 4x
Low Res 21.75 7.35
Baseline 34.52 20.13
SSR-GAN 70.72 56.39
High Res 80.79 88.7
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Fig. 4: The subjective test results for 2x and 4x scales are shown.

row is the high-frequency range spectrograms obtained from a neural
network trained only with LSD loss, and the third row shows SSR-
GAN results, for 2x and 4x, respectively. Note that the LPSs on the
second rows are overly smooth. After the GAN training (third row),
the results are sharper, containing fine details and more energy.

4.3. Subjective Evaluations

We carried out subjective evaluations to test how our method com-
pares to baselines and ground-truth data in terms of human percep-
tion. We generated two test sets where each of them contained 40 ut-
terances, for 2x and 4x scales. The sets included the narrowband sig-
nal, ground-truth high-resolution signal, predicted super-resolution
signals of our method and the baselines. We wanted to limit the test
time for each subject within 30 minutes; therefore we used only the
samples from one of the baseline methods for each resolution scale,
we employed [6] and [7] for 2x and 4x, respectively. There were a to-
tal of 20 volunteers, where each of them evaluated 80 samples. Each
volunteer was trained by listening to the 5 pairs of low and ground-
truth high-resolution utterances. The testing samples were randomly
presented to the volunteers, and they assigned a score between 0 and
100 for each sample, where 0 corresponds to the low-resolution sig-
nal and 100 corresponds to the high-resolution signal.

The 2x and 4x scale experiment results are shown in Figure 4.
The ground truth high-resolution speech has a score of 80.79%,
which is followed by our method with a score of 70.72%. The
low-resolution signal and BL1 has lower scores, which are 21.75%
and 34.52%, respectively. Since SSR-GAN score is close to the
high-resolution signal, we can conclude that for 2x scale, SSR-GAN
can convince the listeners in terms of speech quality and can outper-
form the baseline method. The 4x experiments are more challenging,
and the missing phase information is more apparent compared to 2x
experiments. The gap between the high-resolution score and SSR-
GAN is around 32%. SSR-GAN can still outperform the baseline
method and has more than 50% score.

5. CONCLUSION

In this work, we presented a novel method that leverages adversar-
ial training for the speech super-resolution. Through objective and
subjective evaluations, we showed that our method outperforms the
DNN based baseline methods. The subjective evaluations revealed
that for a 2x resolution scale, our method could score close to the
ground-truth high-resolution signal, and could obtain a decent per-
formance for a 4x resolution scale. Our method is light-weight in
terms of computational complexity and capable of running in real-
time on edge devices. Our future work includes estimating the phase
information along with the spectrograms.
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