
EVOLUTIONARY SUBSPACE CLUSTERING: DISCOVERING STRUCTURE IN
SELF-EXPRESSIVE TIME-SERIES DATA

Abolfazl Hashemi and Haris Vikalo

Department of Electrical and Computer Engineering
University of Texas at Austin, Austin, TX 78712, USA

ABSTRACT

An evolutionary self-expressive model for clustering a collection of
evolving data points that lie on a union of low-dimensional evolving
subspaces is proposed. A parsimonious representation of data points
at each time step is learned via a non-convex optimization frame-
work that exploits the self-expressiveness property of the evolving
data while taking into account data representation from the preced-
ing time step. The resulting scheme adaptively learns an innovation
matrix that captures changes in self-representation of data in consec-
utive time steps as well as a smoothing parameter reflective of the
rate of data evolution. Extensive experiments demonstrate superior-
ity of the proposed framework overs state-of-the-art static subspace
clustering algorithms and existing evolutionary clustering schemes.

Index Terms— subspace clustering, evolutionary clustering,
self-expressive models, temporal data, real-time clustering

1. INTRODUCTION

Subspace clustering is the problem of clustering a collection of
points that lie on a union of low-dimensional subspaces [1]. This
task is typically performed by constructing a similarity matrix that
represents the relations among data points and relying on spectral
clustering [2] to find a segmentation of the data. To form the simi-
larity matrix, state-of-the-art methods exploit the self-expressiveness
property [3] of data and identify a so-called subspace preserving
similarity matrix that captures similarities among data points origi-
nating from the same subspace. In particular, finding such a matrix
requires solving the optimization

min
C
‖C‖ s.t. ‖X−XC‖2F ≤ ε, diag(C) = 0, (1)

where X and C denote the data and representation matrices, respec-
tively. Specifying different matrix norms in the objective function
in (1) leads to different subspace clustering schemes. For instance,
the sparse subspace clustering (SSC) method in [3, 4] utilizes ‖ · ‖1,
while methods based on orthogonal matching pursuit (OMP) [5, 6]
and low-rank representations (LRR) enforce minimization of ‖C‖0
and ‖C‖∗ (i.e., the nuclear norm or sum of singular values of C),
respectively. After C is found, one defines an affinity (or similarity)
matrix A = |C| + |C|> and applies spectral clustering [2] to find
the clustering solution.

In many problems, besides having structural properties (e.g.,
union-of-subspaces and self-expressiveness), data is often acquired
at multiple points in time and a clustering solution is needed for each
time step. In other words, the data points – which are now stored
as the columns of the evolving data matrix Xt – evolve with time.
For example, in real-time motion segmentation it is well-known that
feature point trajectories associated with motion in a video lie in

an affine subspace [7]. Motion during any given short time inter-
val (e.g., a few consecutive frames) is related to the motion in re-
cent past. Therefore, in addition to the union-of-subspaces struc-
ture of the video data, there exists an underlying evolutionary struc-
ture characterizing the motion. Therefore, it is of interest to design
and investigate frameworks that exploit both union-of-subspaces and
temporal smoothness structures to perform fast and accurate cluster-
ing, particularly in real-time applications where a clustering solution
is required at each time step.

In this paper, we study evolutionary subspace clustering – the
task of clustering data points that lie on a union of evolving sub-
spaces. In particular, we introduce the evolutionary self-expressive
model (ESEM), an optimization framework that exploits the self-
expressiveness property of data and learns sparse representations
while taking into account representations from prior time steps. The
task of learning parameters of the ESEM leads to a non-convex op-
timization problem which is approximately solved via an alternating
minimization procedure. In the process of learning data represen-
tation, we further tune a smoothing parameter which characterizes
the significance of prior data representations, i.e., quantifies simi-
larity of the representation in successive time steps. The smooth-
ing parameter is shown to be reflective of the rate of evolution of
the data and signifies the amount of temporal changes in consecu-
tive data snapshots. Following extensive simulations on synthetic
datasets and real-world datasets originating from real-time motion
segmentation, we demonstrate that the proposed framework signifi-
cantly improves the performance and decreases computational cost
of state-of-the-art static subspace clustering algorithms that exploit
only the self-expressiveness property of the data.

2. EVOLUTIONARY SELF-EXPRESSIVE MODEL

Let {xt,i}Nt
i=1 be a collection of (evolving) real-valued Dt-dimensi-

onal data points at time t and let us organize those points in a matrix
Xt = [xt,1, . . . ,xt,Nt] ∈ RDt×Nt . The data points are drawn
from a union of nt evolving subspaces {St,i}nt

i=1 with dimensions
{dt,i}nt

i=1. Without loss of generality, we assume that the columns of
Xt, i.e., the data points, are normalized vectors with unit `2 norm.1

Due to the underlying union-of-subspaces structure, data satisfies the
self-expressiveness property [3] formally stated below.

Definition 1. A collection of evolving data points {xt,i}Nt
i=1 satisfies

the self-expressiveness property if each point has a linear represen-
tation in terms of the other points in the collection, i.e., there exist a
representation matrix Ct such that

Xt = XtCt, diag(Ct) = 0. (2)

1As we proceed, for simplicity we may omit the time index.

3707978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Subspace clustering attempts to partition {xt,i}Nt
i=1 into nt

groups such that data points that belong to the same subspace are in
the same cluster. To distinguish between different methods, we refer
to subspace clustering schemes that find a representation matrix Ct

which satisfies (2) as static subspace clustering methods. As stated
in Sections 1, in many applications the subspaces and the data points
lying on the union of those subspaces evolve over time. Imposing
the self-expressiveness property helps exploit the fact that the data
points belong to a union-of-subspaces. However, (2) alone does not
capture potential evolutionary nature of the data. To this end, we
propose to find a representation matrix Ct, for each time t, such that

Ct = U + αCt−1, Xt = XtCt, diag(Ct) = 0, (3)

where U and α are parameters that will be learned. Intuitively, the
innovation representation matrix U captures changes in the repre-
sentation of data points from time t− 1 to t. The term αCt−1 is the
part of temporal representation that carries over from the previous
snapshot of the data. The parameter −1 ≤ α ≤ 1 quantifies sig-
nificance of the previous representation on the structure of the data
points at time t (i.e., it quantifies the “memory” of the representa-
tion). Intuitively, if the data is static we expect α = 0. Conversely,
if the temporally evolving data is characterized by a relatively stable
subspace representation, we expect α to be closer to 1 or −1.

Since we seek sparse representations, we require the innovation
matrix U to be sparse; moreover, diag(U) = 0. Consequently, the
task of finding U and α amounts to solving

min
U,α

‖Xt −Xt(U + αCt−1)‖2F

s.t. diag(U) = 0, ‖U‖0 ≤ k, −1 ≤ α ≤ 1.
(4)

Parameter k determines sparsity level of the innovation representa-
tions. Since each point in Si can be written in terms of at most d
points in Si, we typically set k ≤ d (assuming the subspaces have
the same dimension).

We refer to (4) as the evolutionary self-expressive model
(ESEM). Note that due to cardinality constraint, (4) is a non-convex
optimization problem even though the objective and other con-
straints are convex in both U and α.

2.1. Alternating minimization solvers

We propose to find U and α in an alternating fashion. In particular,
given Ut−1, the innovation representation matrix found at time t−1,
we can find the smoothing parameter according to

α = arg min
−1≤ᾱ≤1

‖Xt −Xt(Ut−1 + ᾱCt−1)‖2F . (5)

The objective function in (5) is unimodal and convex; in our im-
plementation, we rely on the golden-section search algorithm [8] to
efficiently find α. Once α is found, we arrive at the representation
learning step which requires solving

min
U

‖Xt −Xt(U + αCt−1)‖2F

s.t. diag(U) = 0, ‖U‖0 ≤ k,
(6)

which is a non-convex optimization problem due to the cardinality
constraint. Let X̃t = Xt − αXtCt−1. Then,

min
U

‖X̃t −XtU‖2F s.t. diag(U) = 0, ‖U‖0 ≤ k. (7)

The optimization problem (7) is clearly related to static subspace
clustering with sparse representation (cf. (1)), and in general to the

compressed sensing problems [9]. Therefore, similar to static sparse
subspace clustering schemes [3–6, 10], we can employ compressed
sensing approaches such as basis pursuit (BP) [11] (or the related
LASSO [12]), orthogonal matching pursuit (OMP) [13], and orthog-
onal least squares (OLS) [14] algorithms to find a suboptimal inno-
vation matrix U in polynomial time.

Specifically, for the BP-based representation learning strategy,
we consider the convex relaxation program

min
U

‖U‖1 +
λ

2
‖X̃t −XtU‖2F s.t. diag(U) = 0, (8)

which can be solved using any convex solver (e.g. schemes based
on ADMM [15]). Here, λ > 0 is a regularization parameter that
determines sparsity level of the innovation representations.

For the OMP-based strategy, to learn the representation for each
data point xjt , j ∈ [N], we define an initial residual vector r0 = x̃jt
and greedily select k data points indexed by Ak = {i1, . . . , ik} ⊂
[N] that contribute to the representation of xjt according to

i` = arg max
i∈[N]\A`−1∪{j}

|r`−1xit |
2, (9)

where ` ∈ [k]. The residual vector is updated according to r` =

P⊥A`
x̃jt , where P⊥S = I − XSX

†
S is the projection operator onto

the orthogonal complement of the subspace spanned by the columns
of XS , and X†S =

(
X>SXS

)−1
X>S denotes the Moore-Penrose

pseudo-inverse of XS . Once Ak is determined, the innovation rep-
resentation is computed as the least square solution uj = X†Akt

x̃jt .
The OLS-based representation learning strategy is similar to that

of OMP, except with a modified selection criterion:

i` = arg max
i∈[N]\A`−1∪{j}

|r`−1xit |2

‖P⊥A`−1
xit‖22

. (10)

Once both U and α are found, the desired representation matrix Ct

is computed by Ct = U + αCt−1.
Remark 1. In practice, it may happen that some of the data points

vanish over time while new data points are introduced. Our proposed
framework readily deals with such scenarios. Let T denote the set
of indices of data points introduced at time t that were not present at
time t − 1. To incorporate these points into the model, we expand
Ct−1 by inserting all-zero vectors in rows and columns indexed by
T . New data points do not play a role in the temporal representa-
tions of other data points but they may participate in the innovation
representation matrix U. Finally, let T denote the set of indices of
data points that were present at time t− 1 but have vanished at time
t; those points are removed from the model by excluding rows and
columns of Ct−1 that are indexed by T .

2.2. Complexity analysis

Since it takes O(N2) to evaluate the objective function in (5), the
complexity of finding the smoothing parameter using the golden-
section search is O(N2).

The cost of using BP-based strategy to learn the innovation rep-
resentation matrix U in τ iterations of the interior-point method is
O(τDN3). However, by using an efficient ADMM implementation
the complexity can be reduced to O(τmD

2N2) where τm denotes
the maximum number of iterations of the ADMM algorithm.

Since greedy schemes require search overO(N)D-dimensional
data points in k iterations, the complexity of learning innovation
representation matrix using OMP and OLS methods is O(kDN2)
and O(kD2N2), respectively. The complexity of the OLS-based

3708

2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Static

ESEM

AFFECT

(a)

2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Static

ESEM

AFFECT

(b)

2 4 6 8 10 12 14 16 18 20

-0.4

-0.2

0

0.2

0.4

0.6

(c)
Fig. 1: (a) Comparison of clustering accuracy on simulated rotating random subspaces data with 45◦ rotation. (b) Comparison of clustering accuracy on
simulated rotating random subspaces data with 45◦ rotation and subspace changes. (c) Comparison of temporal changes in the value of smoothing parameter
α for various settings of rotating random subspaces data.

method can further be reduced using the accelerated OLS (AOLS)
algorithm, introduced in [16]. In contrast to OLS that greedily se-
lects data points according to (10), AOLS efficiently builds a collec-
tion of orthogonal vectors to represent the basis of P⊥A`−1

in order
to reduce the cost of projection involved in (10). In addition, AOLS
anticipates future selections via choosing L data points in each iter-
ation, where L ≥ 1 is an adjustable hyper-parameter. Therefore, in
our implementations, we employ the AOLS strategy instead of OLS
to learn the innovation matrix U. More details regarding implemen-
tation of ESEM are included as part of the extended manuscript [17].

2.3. Dealing with outliers and missing entries

The evolving data may contain outliers or missing entries at some or
all of the time steps. The proposed framework allows for application
of convex relaxation methods to handle such cases. Specifically, let
E denote a sparse matrix containing outliers, and let Ω denote the
set of observed entries of the corrupted data Xc

t . Define the operator
PΩ : RD×N → RD×N as the orthogonal projector onto the span
of matrices having zero entries on [D] × [N]\Ω, but agreeing with
Xc
t on entries indexed by the set Ω. Prior to employing greedy rep-

resentation learning methods, we identify outliers and values of the
missing entries by solving the convex program

min
Xt,E

‖Xt‖∗ + λe‖E‖1

s.t. PΩ(Xc
t) = PΩ(Xt), Xc

t = Xt + E.
(11)

Then we can apply the ESEM framework using any of the greedy
representation learning methods to process the “clean” data Xt, ul-
timately finding the representations and clustering results.

Compared to greedy methods, BP-based approach enjoys joint
representation learning and corruption elimination. That is, by let-
ting X̃t = Xt − αXtCt−1 we may solve

min
Xt,U,E

‖U‖1 +
λ

2
‖X̃t −XtU‖2F + λx‖Xt‖∗ + λe‖E‖1

s.t. PΩ(Xc
t) = PΩ(Xt), Xc

t = Xt + E, diag(U) = 0,
(12)

to simultaneously learn the innovation, detect the outliers, and com-
plete the missing entries.

3. NUMERICAL TESTS

We compare performance of the proposed ESEM framework to that
of static subspace clustering schemes and the state-of-the-art evo-
lutionary clustering strategy of AFFECT [18]. AFFECT does not

exploit the fact that the data points lie on a union of low dimen-
sional subspaces We found that AFFECT performs poorly compared
to other schemes (including static algorithms) when using the default
RBF kernels as affinity matrices. Hence, in all experiments we use
the representation learning methods introduced in Section 2 for all
evolutionary algorithms including AFFECT.

3.1. Synthetic data: rotating random subspaces

Motivated by motion segmentation task [7] characterized by rota-
tional and transitional motions, we consider the following scenario
of rotating subspaces where we repeat each experiment for 150 trials.

At time t = 1, we construct n = 10 linear subspaces in RD ,
D = 10, each with dimension d = 6 by choosing their bases as the
top d left singular vectors of a random Gaussian matrix in RD×D .
Then, we sample N = 500 data points, 50 from each subspace, by
projecting random Gaussian vectors to the span of each subspace.
Note that, in this setting, all the subspaces are distributed uniformly
at random in the ambient space and all data points are uniformly dis-
tributed on the unit sphere of each subspace. According to the anal-
ysis in [6, 19, 20], this in turn implies that the subspace preserving
property and performance of representation learning methods based
on BP, OMP, and AOLS is similar. However, we intentionally con-
struct relatively low number of data points as compared to the di-
mension of subspaces and the dimension of the ambient space; this
creates a challenging setting for static subspace clustering. After
constructing the subspaces at time t = 1, we evolve the subspaces
by rotating their basis 45◦ around a random vector and project the
data points X1 on the span of the rotated subspaces to obtain the
samples X2. We continue this process for T = 20 time steps.

We next consider an experiment where in addition to rotation, at
time t = 6 data points generated from subspace S10 are absorbed
by subspace S9. That is, at t = 6 we project XS105

to the span of
S9. At time t = 13, these data points are separated from S9 and lie
once again on S10. Hence, for 6 ≤ t ≤ 12 the effective number of
subspaces is n = 9 and there are 100 data points lying in S9.

The clustering accuracy results for these two experiments are
illustrated in Fig. 1 (a) and Fig. 1 (b). As we can see, the static SSC-
OMP algorithm performs poorly compared to ESEM and AFFECT.
Since ESEM and AFFECT exploit the evolutionary behavior of the
data points, after a few time steps their accuracy significantly in-
creases. We further observe that as time passes the proposed ESEM
framework achieve better accuracy than AFFECT as it exploit the
self-expressiveness property of the data points in the representation
learning process rather than simply combining current and prior rep-

3709

Table 1: Comparison of static and evolutionary subspace clustering on real-time motion segmentation dataset. Best results for each row are in boldface fonts.

Static AFFECT ESEM

Learning method error (%) SI (%) runtime (s) error (%) SI (%) runtime (s) error (%) SI (%) runtime (s)

BP 10.76 86.3 46.16 9.86 87.8 47.35 10.25 87.1 49.80

OMP 31.66 79.7 1.80 14.47 86.7 3.31 7.97 87.4 0.82

AOLS (L = 1) 16.27 84.4 4.08 9.27 90.9 5.39 7.63 90.5 1.96

AOLS (L = 2) 8.54 90.3 3.75 6.17 93.1 5.17 5.67 93.1 1.82

AOLS (L = 3) 6.97 92.3 3.14 5.92 93.9 4.28 5.79 94.0 1.71

resentations to enforce the self-expressiveness property.
Next, we investigate value of α, i.e., the smoothing parameter

of ESEM and AFFECT in the aforementioned experiments to fur-
ther assess which scheme more accurately captures the evolutionary
nature of the subspaces. Fig. 1 (c) illustrates changes in the value
of α over time, where in addition to the above two experiments we
consider the scenario where subspaces are not rotating.2 The figure
indicates that the smoothing parameter of AFFECT is approximately
0.5 regardless of the changes happening in the evolution of the sub-
spaces (see the curves at α = 0.5 in the figure). Note that if the data
is static, we expect α = 0 for the ESEM framework and α = 1 for
AFFECT. In contrast to AFFECT’s smoothing parameter, the values
of α for the ESEM framework quickly converged to the anticipated
levels (i.e. 0); note that we initialized α as 0.5. Fig. 1 (c) further
suggest that the smoothing parameter of ESEM noticeably changes
from the set values at times t = 6, 13. This indicates ESEM is able
to detect the subspace changes taking place at t = 6, 13, while AF-
FECT fails to detect whether the subspaces are rotating.

These results suggest that not only ESEM improves the per-
formance of static subspace clustering algorithms when the data is
evolving, but it is superior to state-of-the-art evolutionary clustering
strategies in the considered settings. Furthermore, smoothing param-
eter of ESEM is meaningful and interpretable, and properly adapts
to the underlying evolutionary behavior of the subspaces.

3.2. Real-world data: Real-time motion segmentation

In real-time motion segmentation, the video sequence is often re-
ceived as a stream of frames and it is desirable to identify multiple
rigidly moving objects in the video [21, 22]. In the real-time setting,
the tth snapshot of Xt (a time interval consisting of multiple video
frames) is of dimension 2Ft×Nt, whereNt is the number of trajec-
tories at tth time interval, Ft is the number of video frames received
in tth time interval, nt is the number of rigid motions at tth time inter-
val, and F =

∑
t Ft denotes the total number of frames. Real-time

motion segmentation falls within the scope of evolutionary subspace
clustering since the received video sequence is naturally character-
ized by temporal properties; at tth time interval, the trajectories of
nt rigid motions lie in a union of nt low-dimensional subspaces in
R2Ft , each with the dimension of at most dt = 3nt [23].

In contrast to the real-time motion segmentation, cluster-
ing in offline settings is performed on the entire sequence, i.e.,
X = [X>1 , . . . ,X

>
T]
>

. Therefore, one expects to achieve more ac-
curate segmentation in the offline settings [4, 24]. However, offline
motion segmentation cannot be used in scenarios where some mo-
tions vanish or new motions appear in the video, or in cases where a
real-time motion segmentation solution is desired.

2For illustrative purposes, only curves corresponding to values of α for
ESEM are descried in the legend of Fig. 1 (c).

We consider Hopkins 155 database [7] which consists of 155
video sequences with 2 or 3 motions in each video (corresponding
to 2 or 3 low-dimensional subspaces). Unlike the majority of prior
work (e.g. [4, 24]) that process this data set in an offline setting, we
consider the following real-time scenario: each video is divided into
T data matrices {Xt}Tt=1 such that Ft ≥ 2n for a video with n
motions. Then, we apply PCA on Xt and take its top D = 4n left
singular vectors prior to representation learning.

We benchmark the proposed framework by comparing it to static
subspace clustering and AFFECT; the former applies subspace clus-
tering at each time step independently from the previous clustering
results while the latter applies spectral clustering [2] on the weighted
average of affinity matrices At and At−1. Under the default choices
for the affinity matrix, i.e. negative squared Euclidean distance or
its exponential form, AFFECT achieves a clustering error of 21.96
and 44.15 percent, respectively, which as we present next is inferior
even to the static subspace clustering algorithms. Hence, to fairly
compare the performance of different evolutionary clustering strate-
gies, we employ BP, OMP, and AOLS with L = 1, 2, 3 to learn the
representations for all schemes, including AFFECT.

The clustering error, Silhouette index (SI), and running time of
various schemes are presented in Table 1; there, the results are av-
eraged over all sequences and all time intervals excluding the initial
time interval t = 1. As we can see from the table, the proposed
ESEM framework is superior to AFFECT in terms of clustering er-
ror for majority of the representation learning methods. In addi-
tion, ESEM achieves lower running time than static and AFFECT
strategies for the case of using OMP and AOLS as the representation
learning methods and is more suitable for online applications.

4. CONCLUSION

We formulated the problem of evolutionary subspace clustering that
is concerned with organizing a collection of data points that lie on a
union of low-dimensional temporally evolving subspaces. By rely-
ing on the self-expressiveness property, we proposed a non-convex
optimization framework that enables learning parsimonious repre-
sentations of data points at each time step while taking into account
representations from the preceding time step by introducing an inno-
vation representation matrix as well as a smoothing parameter that
are updated alternatively. Extensive studies on synthetic and real-
world datasets illustrated superiority of the proposed framework over
existing methods.

5. REFERENCES

[1] René Vidal, “Subspace clustering,” IEEE Signal Processing
Magazine, vol. 28, no. 2, pp. 52–68, Mar. 2011.

3710

[2] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al., “On spec-
tral clustering: Analysis and an algorithm,” in the Advances in
Neural Information Processing Systems (NIPS), 2001, vol. 14,
pp. 849–856.

[3] Ehsan Elhamifar and René Vidal, “Sparse subspace clus-
tering,” in Conf. Computer Vision and Pattern Recognition
(CVPR). IEEE, 2009, pp. 2790–2797.

[4] Ehsan Elhamifar and Rene Vidal, “Sparse subspace cluster-
ing: Algorithm, theory, and applications,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

[5] Eva L Dyer, Aswin C Sankaranarayanan, and Richard G Bara-
niuk, “Greedy feature selection for subspace clustering,” The
Journal of Machine Learning Research, vol. 14, no. 1, pp.
2487–2517, Sep. 2013.

[6] Chong You, Daniel Robinson, and René Vidal, “Scalable
sparse subspace clustering by orthogonal matching pursuit,”
in Conf. Computer Vision and Pattern Recognition (CVPR).
IEEE, 2016, pp. 3918–3927.

[7] Roberto Tron and René Vidal, “A benchmark for the compar-
ison of 3-D motion segmentation algorithms,” in Conf. Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2007, pp.
1–8.

[8] Jack Kiefer, “Sequential minimax search for a maximum,” the
American Mathematical Society, vol. 4, no. 3, pp. 502–506,
Sep. 1953.

[9] David L Donoho, “Compressed sensing,” IEEE Trans. Inf.
Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[10] Abolfazl Hashemi and Haris Vikalo, “Accelerated sparse sub-
space clustering,” arXiv preprint arXiv:1711.00126, Oct. 2017.

[11] Scott Shaobing Chen, David L Donoho, and Michael A Saun-
ders, “Atomic decomposition by basis pursuit,” SIAM review,
vol. 43, no. 1, pp. 129–159, Feb. 2001.

[12] Robert Tibshirani, “Regression shrinkage and selection via the
LASSO,” Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267–288, Jan. 1996.

[13] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinku-
lam Sambamurthy Krishnaprasad, “Orthogonal matching pur-
suit: Recursive function approximation with applications to
wavelet decomposition,” in Asilomar Conf. Signals, Syst. and
Computers. IEEE, 1993, pp. 40–44.

[14] Sheng Chen, Stephen A Billings, and Wan Luo, “Orthogonal
least squares methods and their application to non-linear sys-
tem identification,” Int. Journal of Control, vol. 50, no. 5, pp.
1873–1896, Nov. 1989.

[15] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and
Jonathan Eckstein, “Distributed optimization and statistical
learning via the alternating direction method of multipliers,”
Foundations and Trends R© in Machine Learning, vol. 3, no. 1,
pp. 1–122, Jan. 2011.

[16] Abolfazl Hashemi and Haris Vikalo, “Accelerated orthogo-
nal least-squares for large-scale sparse reconstruction,” Digital
Signal Process., vol. 82, pp. 91–105, Nov. 2018.

[17] Abolfazl Hashemi and Haris Vikalo, “Evolutionary self-
expressive models for subspace clustering,” IEEE J. Sel. Topics
Signal Process., vol. 12, no. 6, Dec. 2018.

[18] Kevin S Xu, Mark Kliger, and Alfred O Hero III, “Adaptive
evolutionary clustering,” Data Mining and Knowledge Discov-
ery, vol. 28, no. 2, pp. 304–336, Mar. 2014.

[19] Mahdi Soltanolkotabi and Emmanuel J Candes, “A geometric
analysis of subspace clustering with outliers,” The Annals of
Statistics, pp. 2195–2238, Aug. 2012.

[20] Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J Can-
des, “Robust subspace clustering,” The Annals of Statistics,
vol. 42, no. 2, pp. 669–699, Apr. 2014.

[21] Stephen M Smith and John M Brady, “ASSET-2: Real-time
motion segmentation and shape tracking,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 17, no. 8, pp. 814–820, Aug. 1995.

[22] Robert T Collins, Yanxi Liu, and Marius Leordeanu, “Online
selection of discriminative tracking features,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 27, no. 10, pp. 1631–1643, Aug.
2005.

[23] Carlo Tomasi and Takeo Kanade, “Shape and motion from im-
age streams under orthography: A factorization method,” Int.
Journal of Computer Vision, vol. 9, no. 2, pp. 137–154, Nov.
1992.

[24] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong
Yu, and Yi Ma, “Robust recovery of subspace structures by
low-rank representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

3711

		2019-03-18T11:03:22-0500
	Preflight Ticket Signature

