
LEARNING SIMILARITY-SPECIFIC DICTIONARY FOR ZERO-SHOT FINE-GRAINED
RECOGNITION

Hong Chen1, Liujuan Cao1∗, Rongrong Ji2

1Fujian Key Laboratory of Sensing and Computing for Smart City, Department of Computer Science,
School of Information Science and Engineering, Xiamen University, China

2Fujian Key Laboratory of Sensing and Computing for Smart City, Department of Cognitive Science,
School of Information Science and Engineering, Xiamen University, China

hongc@stu.xmu.edu.cn, caoliujuan@xmu.edu.cn, rrji@xmu.edu.cn

ABSTRACT

In this paper, we study the problem of zero-shot fine-grained
recognition. It aims to distinguish unseen subordinate cate-
gories through some other seen categories within an entry-
level category. We demonstrate the necessity to learn mul-
tiple latent dictionaries through joint training with specific
set of instances, human-defined attributes and the class la-
bels. A novel approach that is capable of 1) automatically
assigning suitable dictionaries for each instance and 2) learn-
ing similarity-specific semantic representations for zero-shot
fine-grained recognition is proposed. Experimental results
on three benchmark datasets demonstrate that the proposed
method achieves superior or comparable performance.

Index Terms— Image analysis, zero-shot learning, fine-
grained recognition

1. INTRODUCTION

Zero-shot fine-grained recognition is an important issue that
has many real-world applications. For example, it is well-
known that object frequencies in natural images follow a
long-tailed distribution [1], in which the uncommon objects
do not occur frequently comparing to the common ones. For
unseen or unfrequent categories, it needs heavy manpower
labeling to collect and annotate sufficient training samples,
especially for fine-grained tasks that need specialized domain
knowledge [2]. The definition of this issue is to distinguish
subordinate but unseen categories within an entry-level cate-
gory, such as identifying new bird species or novel particular
models of aircraft. To make it more suitable for zero-shot
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Fig. 1. Human-defined attributes vs. Latent attributes. The
learned latent attributes would be more discriminative.

fine-grained recognition task, appropriate strategy is of great
importance for zero-shot learning.

Zero-shot learning (ZSL) recognizes an object instance
from a new category never seen before with the help of se-
mantic cues, e.g., human-defined attributes [3, 4, 5], text de-
scriptions [6], word vectors [7]. The assumption for typical
ZSL methods is that there exists a shared embedding space,
in which a mapping function, F (x, y;W ) = φ(x)TWψ(y),
is defined to measure the compatibility between the image
features φ(x) and the semantic representations ψ(y) for both
seen and unseen classes. W is the visual-semantic mapping
matrix to be learned.

Zero-shot fine-grained recognition should satisfy two cru-
cial criteria: 1) to be discriminative for different categories
and 2) to inherit a good semantic space to efficiently classify
novel categories. Most of the previous methods [4, 6, 8, 9]
focus on the second criterion, are mainly driven by explor-
ing a good alignment between the visual and semantic space,
whilst the importance to learn discriminative representations
is left unexploited.

Subsequently, in this paper we mainly focus on the fol-
lowing issues to be solved for zero-shot fine-grained recog-
nition: firstly, the human-defined attributes, though seman-
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tically descriptive, are not exhaustive and discriminative
enough. For example, as shown in Fig. 1, in Caltech-USCD-
Birds-200-2011 fine-grained retrieval dataset [2], each bird
class is described by human-defined attributes such as ’yellow
back’, ’blue wing’, ’medium size’, etc. These annotations are
shared in many categories thus are desirable for knowledge
transfer between categories, especially from seen to unseen
categories. While to distinguish similar features requires the
annotations to be discriminative to make the prediction more
reliable. Peng et al. [8] proposed to learn the latent attributes
that are complementary to the human-defined attributes and
combinate these two attributes together for richer representa-
tion. And Jiang et al. [10] proposed to learn latent attribute
dictionary jointly with attribute space and similarity space,
which thus has more capacity in separating image features.

Secondly, the state-of-the-art ZSL methods [10, 11, 12]
use a global embedding function for all types of images.
These methods, though improve zero-shot recognition ac-
curacy to some extent, they are not particularly suitable for
fine-grained recognition task that needs a more compatible
model for each indistinguishable feature [13]. Xian et al. [13]
randomly assigned training instances to study multiple bilin-
ear compatibility functions to capture latent discriminative
features and obtained considerable performance.

The aforementioned works improve zero-shot recogni-
tion accuracy through either exploring latent discriminative
attributes or learning multiple bilinear compatibility func-
tions. Our method take advantage of both that makes it more
discriminative and more suitable for zero-shot fine-grained
recognition task. Our contributions are three-fold:

• A simple but effective stratery is designed to augment
the human-defined attributes and to learn similarity-
specific dictionaries.

• A dictionary assignment phase is proposed to assign
each test example to appropriate latent dictionary. Each
example is evaluated through suitable dictionaries.

• Extensive experimental evaluations on three bench-
mark datasets show the effectiveness of the proposed
method.

The remainder of this paper is organized as follows: task
definition is introduced in Sec.2. Detailed descriptions of the
proposed approach and quantitative experiments are given in
Sec.3-Sec.4. Finally, we conclude this paper in Sec.5.

2. TASK DEFINITION

For a zero-shot fine-grained recognition task, the training set,
i.e., the seen classes, is defined as S = {(xsi , ysi )}ns

i=1, where
xsi ∈ Xs is a d-dimensional column vector representating the
i-th training image from Cs seen classes, and ysi ∈ Y s is
the corresponding label. The test set, i.e., the unseen classes,

is defined as U = {(xuj , yuj )}nu

j=1, where xuj ∈ Xu is a d-
dimensional column vector representating the j-th test image
from Cu unseen classes, and yuj ∈ Y u is the corresponding
label. Typically, label sets of seen classes and unseen classes
are disjointed, i.e., Y s

⋂
Y u = ∅. Additionally, the human-

defined attributes for both seen and unseen classes are denoted
as As = {asi}C

s

i=1 and Au = {auj }C
u

j=1, where asi and auj in-
dicate the attribute vectors for the i-th seen class and the j-th
unseen class, respectively. At the test stage, given a test in-
stance xu and the attribute annotations of the test classes Au,
the goal is to predict the correspond category label yu for xu.

3. METHODS

The proposed method for zero-shot fine-grained recognition
is illustrated in Fig. 2. Note that the architecture contains
multiple iterative processes of latent discriminative dictionary
learning. For clarity, we illustrate the process of learning one
latent dictionary as an example. In each process, the proce-
dure consists of three different components, 1) the deep fea-
ture network (DF-Net) to extract image features, 2) the appro-
priate dictionary assignment (ADA) to assign each instance to
suitable latent dictionaries and 3) a similarity-specific dictio-
nary learning phase to build the embedding space where the
visual and semantic information are associated.

3.1. The Deep Feature Network

Previous works in the field of object recognition have demon-
strated the success of deep convolutional networks in feature
extraction. Therefore, our framework starts with a convo-
lutional networks responsible for extracting image features,
which is termed as DF-Net. Two kinds of the widely used net-
works are considered, i.e.,VGG-19 [14] and GoogLeNet [15].
For VGG-19, the DF-Net starts from conv1 to fc7. For
GoogLeNet, it starts from conv1 to pool-5 . The feature φ(x)
of input image extracted from DF-Net can be formulated as:

φ(x) = WDF ? x, (1)

where WDF represents the overall parameters of the DF-Net,
and ? denotes a set of operations of DF-Net.

3.2. Appropriate Dictionary Assignment

Learning a single dictionary for ZSL typically leads to the
inconsistency between dictionary and different kinds of in-
distinguishable features, as demonstrated in [13]. Inspired
by the common observations that visually similar images are
spatially nearby in visual feature space, we focus on different
indistinguishable features to benefit the process of dictionary
learning and category classification. Therefore, a new phase,
termed appropriate dictionary assignment (ADA), is designed
for discriminative dictionary learning, which assigns each
dictionary with a set of visually similar examples.
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Fig. 2. Framework of the proposed method. The image rep-
resentations extracted from deep convolutional network (DF-
Net) are projected into visual feature space to assign to suit-
able dictionaries. The assignment process is based on the dis-
tances between each instance and centers of Gausian mod-
els. After this phase, each latent dictionary is jointly trained
with human-defined attributes, label space and specific set of
training instances. The learned dictionaries are discrimina-
tive, semantic-preserving and similarity-specific.

Because of the casual shape of distributions in viusal fea-
ture space, Gaussian mixture model is adopted to modeling
the distribution of examples. More specially, we hypothesize
that each instance subjects to Gaussian distribution, then:

p(x) =

K∑
k=1

πkN (x|µk,Σk), s.t. K ∈ N+, (2)

where πk is the k-th mixing coefficient indicating the probil-
ity of instance x belonging to the distribution k. µk and Σk

represent the learned mean and covariance for the k-th distri-
bution, respectively. Eq. 2 is solved through EM algorithm to
learn an optimal combination of {πk, µk} and the correspond-
ing Σk of each distribution. ADA takes the output of the last
layer of DF-Net (e.g., pool-5 in GoogLeNet) and assigns it to
suitable dictionaries based on the Euclidean distance between
φ(x) and µk during the training and testing phases.

3.3. Similarity-specific Dictionary Learning

To be more adaptable for fine-grained recognition task, we
introduce a joint dictionary learning phase to learn similarity-
specific dictionaries with specific set of training instances,
human-defined attributes and label space. The object func-
tion is formulated as follows:

arg min
Dk,Zk,Wk,Mk

‖Xk −DkZk‖2F + α‖Zk −WkA‖2F

+β‖Yk −MkZk‖2F + γ‖Dk‖2F ,
s.t. ‖di‖22 ≤ 1, ‖wi‖22 ≤ 1, ‖mi‖22 ≤ 1,∀i,

(3)

where k = 1, 2, ...,K with K > 2 indexes over the latent
dictionaries.

Xk is a set of training examples selected by ADA. Yk and
Zk indicate the corresponding labels and the reconstruction
coefficients for the k-th latent dictionary, respectively. Dk

is the learned latent dictionary for the k-th feature distribu-
tion. Wk constructs the relationship between the latent at-
tribute dictionary and human-defined attributes to make the
learned latent dictionary semantic-preserving. By joint train-
ing of category labels, matrix Mk makes the learned dictio-
nary discriminative that contribute to category classification
phase. Parameter α and β control the strength of dictionary
learning and semantic-preserving, respectively. γ is a positive
regularisation parameter and is fixed as γ = 1 in this work.

3.4. Zero-Shot Prediction

In zero-shot fine-grained recognition, we verify the predicted
class label given test image. Given an image xuj and the se-
mantic representationAu of Cu unseen classes, we obtain the
feature vector through DF-Net as φ(xuj ). The human-defined
attributesAu = {auj }C

u

j=1 are projected into the latent attribute
space through matrix Dk. While φ(xuj ) are projected into the
same space by Wk. We allocate suitable learned dictionaries
and combine all the information for label prediction by:

cj = arg
Cu

min
c=1

K∑
k=1

lt‖Wkφ(xuj )−DkA
u‖2F + δ‖Au‖22, (4)

where Dk is the k-th dictionary trained from the k-th set of
training data evaluated by using the reconstruction error. δ
is a regularization term that favours a smaller norm. In this
study, we set δ = 1 for simplicity.

The first setting, termed Proposed-M1, lt is fixed as lt =
1. Prediction results of different dictionaries are combined
through naive ADD operation. While on the second setting,
termed Proposed-M2, lt is defined as lt = 1

t+1 to penal-
ize dictionaries with lower rank, where t represents the t-th
nearby dictionary in the embedding space. The distance is
evaluated based on Euclidean distance between φ(xuj ) and µk.

4. EXPERIMENTS

4.1. Experimental Settings

Quantitative experiments are conducted on three benchmark
datasets, i.e., Animal with Attributes (AwA) [3], Caltech-
USCD-Birds-200-2011(CUB) [2], and SUN-A [16]. Details
of the three datasets are shown in Table 1. We utilize the
attributes provided by the original datasets.

AwA contains 30,475 images beloging to 50 animal
classes, paired with a human provided 85-D attribute in-
ventory and corresponding class-attribute associations. We
follow the default split that has been provieded in [17]. CUB
consists of 200 bird species with 11,788 images that serves
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Table 1. Details of the three benchmark datasets. (’No.’ represents for ’Number’.)
dataset No. of attributes No. of seen classes No. of unseen classes No. of train samples No. of test samples
AwA [3] 85 40 10 24295 6180
CUB [2] 312 150 50 7057 2933
SUN-A [16] 102 707 10 14140 200

as a benchmark dataset for fine-grained recognition and re-
trieval. We use the same zero-shot split as [18]. The SUN-A
dataset was introduced by Patterson and Hays in [16], which
is a subset of the SUN Database [19]. It is a fine-grained
dataset, which shows less variations across different classes.

In this paper, two parameters α and β are tuned using five-
fold cross-validation. The size of latent dictionary is fixed as
600. K is determined empirically. Our experiments show that
K = 11 can fully capture different kinds of indistinguishable
features, distinguishing them clearly. We use the common
evaluation metrics of ZSL, i.e., the multi-class classification
accuracy (MCA) to evaluate the models:

MCA =
1

|N |

|N |∑
i=1

classi, (5)

where classi is the prediction accuracy of i-th unseen class.
|N | corresponds the total number of unseen classes.

4.2. Experimental Results

The comparison results are shown in Table 2. Among all
the comparisons, DAP [17], ESZSL [9] and SSE [20] study
a fixed mapping between semantic space and visual space,
while LAD [10] jointly learns a latent dictionary with seman-
tic space, visual space and category labels. The increases of
MCA profit from the application of joint dictionary learning
with category labels. Compared with the previous methods,
LatEM [13] presents the first work to employ multiple pro-
jections to implicitly capture different visual characteristics
of objects. The improvement of MCA demonstrate the ad-
vantage of using multiple dictionaries. Our framework take
advantage of the two streams and propose to learn multi-
ple similarity-specific dictionaries, which shows significantly
better performance comparing to the methods using either of
them.

Compared with Proposed-M1, the only difference be-
tween Proposed-M1 and Proposed-M2 is that Proposed-M2
penalizes the irrelavent dictionaries. As is shown in Table 2,
the performance of Proposed-M2 consistently outperforms
Proposed-M1 on three datasets, which demonstrates that
treating multiple similarity-specific dictionaries with differ-
ent reliabilities that based on their interdependency benefits
the recognition phase.

Several recently developed state-of-the-art approaches in
the literature are selected for further comparison. As shown
in Table 2, the proposed methods perform comparable or

Table 2. Zero-shot recognition accuracy (%) of the compar-
isons on three benchmark datasets. There are two kinds of
features: VGG-19 features [V] and GoogLeNet features [G].
Note that some comparative approaches conduct experiments
on other datasets or with other kinds of features, and we do
not list those results. ’-’ indicates results not reported.

Method AwA CUB SUN-A
V G V G V G

DAP [17] 57.2 60.5 39.8 39.1 72.0 -
ESZSL [9] 75.3 59.6 - 44.0 82.1 82.1
SSE [20] 68.8 - 43.7 - 54.5 -
LatEM [13] - 71.9 - 45.5 - -
JLSE [21] 80.5 - 42.1 - 83.8 -
Long et.al [12] 82.1 - 45.7 - 86.5 -
MFMR [22] 79.8 76.6 47.7 46.2 - -
LAD [10] 82.4 - 56.6 - 85.0 -
Proposed-M1 80.0 67.1 56.8 58.3 81.5 84.5
Proposed-M2 82.7 76.1 58.5 58.3 87.5 88.5

superior on all the datasets. In general, Proposed-M2 based
on VGG-19 and GoogLeNet achieve comparable accuracy on
AwA dataset (82.7% vs. 82.4%). On CUB dataset, Proposed-
M2 based on VGG-19 achieves a MCA of 58.5%, which
is higher than the best comparison LAD [10](56.6%) by
1.9%. Our model obtains more significant improvement and
achieves 88.5% that outperforms all the comparison meth-
ods to the state-of-the-art method on SUN-A dataset. CUB
and SUN-A are benchmark datasets for more challenging
task, more specially, zero-shot fine-grained recognition. Our
method consistently outperform all the baseline methods
and achieve the best performance in zero-shot fine-grained
recognition task.

5. CONCLUSION

In this work, we propose to pay attention to the more chal-
lenging recognition task, termed zero-shot fine-grained recog-
nition. A novel framework that is more suitable for zero-shot
fine-grained recognition has been proposed to study latent
dictionaries that obtaining latent similarity-specific attributes
for different types of visually indistinguishable features. We
conduct comprehensive empirical analysis on three bench-
mark datasets and demonstrate the superiority of the proposed
model.
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