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ABSTRACT
This paper addresses the subspace clustering problem based
on low-rank representation. Combining with the idea of co-
clustering, we proposed to learn an optimal structural bipartite
graph. It’s different with other classical subspace clustering
methods which need spectral clustering as post-processing on
the constructed graph to get the final result, our method can
directly learn a structural graph with k connected components
so that the different clusters are obtained easily. Furthermore,
we introduce a regularization term of error matrix to our mod-
el which helps the proposed algorithm to be more effective
to learn an optimal graph under the circumstances of various
noise. Experimental results both on synthetic and benchmark
datasets are presented to show the effectiveness and robust-
ness of our model.

Index Terms— Subspace Clustering, Bipartite Graph,
Low-Rank Representation, Laplacian Rank Constraint.

1. INTRODUCTION

Subspace segmentation plays a very important role in clus-
tering problem as it applies in many research areas including
machine learning [1], image compression [2, 3], computer vi-
sion, e.g. image/motion/video segmentation [4, 5, 6, 7], and
system identification. At present, the graph based methods
have a good development in solving the problem of subspace
clustering. Sparse Subspace Clustering (SSC) [8] and Robust
Subspace Clustering by Low-Rank Representation (LRR) [9]
are two typical models which utilize the sparse representation
and low-rank representation respectively to solve this problem
and the results are very satisfactory. These graph based meth-
ods divide the subspace clustering task in two steps’ process-
es: constructing graph and spectral clustering, which mean-
s the graph based methods must need spectral clustering as
postprocessing to get the final results.

In this paper, according to the idea of co-clustering [10],
we propose a novel representation based method to learn an
optimal structured bipartite graph with k connect compo-
nents. By Theorem 1, we constrain the graph with the rank
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of its Laplacian matrix. Unlike the traditional methods which
need spectral clustering to get the final clustering results, our
method can obtain the segmentation result directly through
the learned bipartite graph without postprocessing. The pro-
posed model is based on the low-rank representation so that
it’s better at capturing the global structure of the original data
than sparse representation. Besides, we introduce the regu-
larization term of error matrix in the proposed method which
makes our model more robust to noise and easy to construct
the graph. The experimental results verify the validity and
high performance of the proposed model.

The rest of this paper is shown as follows: in section 2, we
revisit the low-rank representation based method (LRR) and
co-clustering. Section 3 proposes the novel low-rank based
model with learning an optimal bipartite graph and an alter-
nating iterative algorithm is introduced to optimize it. Section
4 gives the experimental results which demonstrate the effec-
tiveness of proposed model. Finally, we conclude this paper
in section 5.

2. LOW-RANK REPRESENTATION AND
CO-CLUSTERING REVISITED

The low-rank representation based method (LRR) is proposed
by Liu et al. [9]. In order to get the optimal adjacent ma-
trix Z capturing the global structure of original data, LRR
utilizes the nuclear norm [11] to solve the low-rank represen-
tation problem. The optimization objective function can be
described as:

min
Z

∥Z∥∗, s.t. X = XZ. (1)

LRR has a unique closed form solution Z = V V T , in which
V is the right singular matrix drawn from the SVD of X . Be-
sides, it has been proved that the obtained solution Z satisfies
the block diagonal property when subspaces are independent.

To have a better clustering performance, co-clustering
proposes to utilize the duality information between features
and samples to construct the bipartite graph. For a similarity
graph S, the bipartite graph G is denoted as follows:

G =

[
0 S
ST 0

]
. (2)
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Based on bipartite spectral graph partitioning [12], the nor-
malized cut on the graph G is equivalent to the trace norm
minimization problem as follows:

min
FTF=I

Tr(FT L̃F ), (3)

where L̃ is the normalized Laplacian matrix and L̃ = I −
D− 1

2GD− 1
2 . D is the diagonal degree matrix and the i-th

diagonal element is denoted as di =
∑

i sij .

3. ROBUST SUBSPACE CLUSTERING WITH
LEARNED STRUCTURED GRAPH

Problem (1) presents the low-rank representation based mod-
el. In general, after obtaining the optimal solution Z, the
graph is constructed by (|ZT | + |Z|)/2 and spectral cluster-
ing is utilized on this graph. In this work, combining with the
idea of co-clustering, we want to learn an optimal bipartite
graph with k connected components [10] which can avoid the
postprocessing. So based on the coefficient matrix Z obtained
by low-rank representation, we can learn a graph S from the
matrix Z to construct the bipartite graph G defined in Eq.(2)
which has k connected components. Hence, for a given data
matrix X ∈ Rd×n, the proposed model can be described as
follows:

min
Z,E,G∈Ω

∥Z∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F

s.t. X = XZ + E,S ≥ 0, S′111 = 111.
(4)

Here, 111 = (1, 1, ..., 1)T and Ω represents the set of the graph
G defined in Eq.(2), which has exact k connected compo-
nents.

Based on the constraint conditions in problem (4), the bi-
partite graph is nonnegative. And the reference [13] gives
an important property about the normalized Laplacian matrix
L̃G = I − D

1
2

GGD
1
2

G associated with the graph G which can
be seen in Theorem 1.

Theorem 1 The multiplicity k of the eigenvalue 0 of the nor-
malized Laplacian matrix L̃G is equal to the number of con-
nected components in the graph associated with G.

According to the Theorem 1, we know that if rank(L̃G) =
N − k, the constraint G ∈ Ω will be satisfied. Here, N = 2n.
So the problem (4) can be rewritten as:

min
Z,S

∥Z∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F

s.t. X = XZ + E,S ≥ 0, S′111 = 111, rank(L̃G) = N − k.

(5)

Assuming that σi(L̃G) is the i-th smallest eigenvalue
of L̃G. Because the Laplacian matrix L̃G is positive semi-
definite, we have σi(L̃G) ≥ 0. Therefore, we can convert

problem (5) to the following problem:

min
Z,E,S

∥Z∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F + λ3

k∑
i=1

σi

(
L̃G

)
s.t. X = XZ + E,S ≥ 0, S′111 = 111.

(6)

Cause σi(L̃G) ≥ 0 for each i, when λ3 is large enough, the

objective function (6) will let the last term
k∑

i=1

σi

(
L̃G

)
to be

zero, which is equivalent to problem (5).
Based on the Ky Fan’s Theorem [14], we have:

min

k∑
i=1

σi

(
L̃G

)
= min

F∈RN×k,FTF=I
Tr

(
FT L̃GF

)
. (7)

Therefore, combining with problem (6), the final optimal
problem can be described as follows:

min
Z,E,S,F

∥Z∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F + λ3tr(F
T L̃GF )

s.t. X = XZ + E,S ≥ 0, S′111 = 111, FTF = I, F ∈ RN×k.

(8)

In the next section, an alternating iteration based algorith-
m is proposed to address this model.

3.1. Optimization

For the objective function (8), there are four variables needed
to be updated. When fixing the variables S and F , problem
(8) can be further transformed into the following problem:

min
Z,E,J

∥J∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F

s.t. X = XZ + E,Z = J.
(9)

So we can get the Augmented Lagrange Multiplier problem
of objective function (9) as follows:

min
Z,E,J,Y1,Y2

∥J∥∗ + λ1 ∥E∥2,1 + λ2 ∥S − Z∥2F

+ tr[Y T
1 (X −XZ − E)] + tr[Y T

2 (Z − J)]

+
µ

2
(∥X −XZ − E∥2F + ∥Z − J∥),

(10)

here, Y1 and Y2 are Lagrange multipliers and µ ≥ 0 is a penal-
ty parameter. The above problem can be solved by exact ALM
algorithm [15]. We will show the specific process next.

When updating the matrix J , problem (10) becomes:

argmin
J

1

µ
∥J∥∗ +

1

2
∥J − (Z +

1

µ
Y2)∥2F . (11)

The reference [15] has proved that problem (11) has an ana-
lytical solution.
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When updating the coefficient matrix Z, problem (10)
can be further transformed into convex optimization problem.
Hence, by taking the derivative of this convex problem and
making it zero, we can get the update form of Z as follows:

Z =[(1− 2λ2

µ
)I +XTX]−1[XTX − 2λ2

µ
S −XTE

+ J +
1

µ
(XTY1 − Y2)].

(12)

When updating the error matrix E, problem (10) can be
rewritten as:

argmin
E

λ1

µ
∥E∥2,1 +

1

2
∥E − (X −XZ +

1

µ
Y1)∥2F . (13)

Lin et al. [9] have given the closed-form solution for this
problem in Lemma 3.2.

After obtaining the two variables Z and E, we need to
update the other matrices S and F . So the problem (8) is
equivalent to the following problem:

min
S,F

∥S − Z∥2F + λtr(FT L̃GF )

s.t. S ≥ 0, S′111 = 111, FTF = I, F ∈ RN×k,
(14)

here, λ = λ3/λ2.

When fixing S, cause L̃G = I − D
1
2

GGD
1
2

G, the problem
for solving matrix F can be rewritten as the following form:

max
FTF=I,F∈RN×k

tr(FTD
1
2

GGD
1
2

GF ) (15)

The matrix F and degree matrix DG can be rewritten as the
following block forms:

F =

[
U
V

]
, DG =

[
DGu

DGv

]
. (16)

Due to the structure of bipartite graph G defined in Eq.(2),
the problem (15) can be converted as:

max
UTU+V TV=I

Tr(UTD
− 1

2

Gu
ZD

− 1
2

Gv
V ). (17)

Nie et al. [10] give the solution for this problem in Lemma
1, where the solution is U =

√
2
2 U1, V =

√
2
2 V1. Here, U1,

V1 are the leading k left and right singular vectors of matrix
D

− 1
2

Gu
ZD

− 1
2

Gv
respectively.

When F is fixed, the problem (14) becomes:

min
S≥0,S′111=111

∥S − Z∥2F + λtr(FT L̃GF ) (18)

Based on the property of Laplacian matrix and the structure
of G define in Eq.(2), we have the following equation:

tr(FT L̃GF ) =

n∑
i=1

m∑
j=1

∥ fi√
di

− fj+n√
dj+n

∥22sij . (19)

Based on Eq.(19), we can transform the problem (18) into the
following problem:

min
S≥0,S′111=111

n∑
i=1

m∑
j=1

(sij−zij)
2+λ∥ fi√

di
− fj+n√

dj+n

∥22sij (20)

It’s easy to find that problem (20) is independent between d-
ifferent i. Therefore, this problem is equivalent to optimize
the following problem individually for each i. Denote the j-
th element of column vector hi as hij = ∥ fi√

di
− fj+n√

dj+n

∥22
and give the same definition for si and zi. So for each i, the
problem (20) can be rewritten as the vector form:

min
si≥0,s′i111=1

∥(si − (zi −
λ

2
hi)∥22. (21)

An efficient iterative algorithm is given to solve this problem
by reference [16]. Hence, we conclude the algorithm to solve
the problem (8) in Algorithm 1. In this algorithm, we can only
update the c nearest similarities for each column in S. So we
can reduce the complexity of updating S and F significantly.
Besides, we only need the SVD on an n × n matrix in each
iteration, which don’t need to conduct eigen-decomposition
on the N ×N bipartite graph G. So the proposed Algorithm
1 is very efficient to solve the subspace clustering problem.

Algorithm 1 Algorithm to solve problem (8) (LOSBG)
Input: data matrix X , the cluster number k.
Output: the learned bipartite graph G and the cluster label.
Initialize: Randomly initialize the matrix S to satisfy the
constraint condition in problem (8).
repeat

1. Fix others, update J by solving problem (11).
2. Fix others, update Z by formula (12).
3. Fix others, update E by solving problem (13),
4. Fix others, update S, for each column vector si, which
is updated by solving the problem (21).
5. update F which can be solved by problem (17) based
on the definition of F in formula (16).
6. update the multipliers Y1, Y2 and parameter µ.

until converge

For the proposed model (8), it has three parameters which
makes the model seems very complexity. In fact, there is only
one parameter need to be regulated. The graph S is deter-
mined by Z, so solving for Z cannot be affected by S, which
means that the parameter λ2 must be small enough in prob-
lem (9). Besides, when updating S, F in problem (14), we
need the parameter λ = λ3/λ2 large enough. So based on the
above analysis, we just let the parameter λ2 small enough and
set λ3 be a constant, which makes our model to be affected
only by one parameter λ1. Besides, according to the analysis
on LRR [9], our model is not sensitive to the parameter λ1.
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(d) noise = 0.9

Fig. 1. The learned graphs after binarization, obtained by LOSBG conducting on synthetic dataset in different settings of noise.
And the clustering results are 100%, 100%, 100%, 79.80% respectively.

Table 1. The clustering accuracy (%) and standard error (%) on the Hopkins 155.

Method two motions three motions All

mean median min std mean median min std mean median min std

RANSAC 94.88 98.63 54.33 9.38 81.51 86.18 52.55 14.26 91.86 97.22 52.55 12.01
LSA 95.29 99.56 51.59 10.91 90.57 95.86 46.59 14.35 94.22 99.33 46.59 11.89
SSC 92.93 99.29 53.46 12.79 80.45 88.27 47.34 15.69 90.11 97.45 47.34 14.43
LRR 97.32 100.00 53.53 7.13 88.29 93.50 58.20 14.06 95.28 100.00 53.53 9.86

LatLRR 97.89 100.00 55.35 7.71 96.26 100.00 64.09 8.58 97.52 100.00 55.35 7.92
BDR 98.74 100.00 51.52 6.46 98.78 99.79 87.59 2.50 98.74 100.00 51.52 5.80

LOSBG 99.30 100.00 79.87 2.51 95.97 99.60 72.19 6.80 98.55 100.00 72.19 4.12

4. EXPERIMENT

In this section, we will verify the validity and effectiveness of
the proposed model (named LOSBG) on a synthetic datasets
and Hopkins 155 Datasets.

Synthetic Data. First, we apply LOSBG to a high-dimensional
toy dataset as a sanity check, which is drawn from an 200-
dimensional Euclidean space. We randomly select five 50-
dimensional subspaces from this space and take 100 samples
from them respectively to form this toy dataset. Besides, in
order to verify the robustness of LOSBG under the situation
of noise, we add Gaussian noise to this dataset and set the
portion of noise to be r = 0.6, 0.7, 0.8, 0.9 respectively.

We conduct LOSBG on this high-dimensional synthetic
dataset with noise. Figure 1 shows the learned graph S after
binarization, which constructs the bipartite graph G defined
in Eq.(2). It can be seen that, when the portion of noise
r = 0.6, 0.7, 0.8, our model can learn a perfect block diago-
nal structure. When r = 0.9, which means the data has been
heavily contaminated, the Figure 1(d) shows that LOSBG
also has the good clustering performance.

Motion Segmentation. Hopkins 155 Dataset is a motion
dataset and provided by the Vision Lab of Johns Hopkins U-
niversity [17]. This dataset is made up of 155 sequences and
each sequence is one clustering task that need to be segment-

ed into two or three motions. For comparison, we also list the
results of RANSAC (Random Sample Consensus) [18], LSA
(Local Subspace Analysis) [6], SSC, LRR, LatLRR [19] and
BDR [20]. These methods are tested on the same datasets and
the parameters are tune to the best.

Table 1 displays the comparison results of LOSBG with
other methods. We notice that LOSBG is better than the algo-
rithms which utilize spectral clustering as postprocessing like
LRR, LatLRR etc. Besides, LOSBG achieves almost the best
results among all comparison methods. So the effectiveness
of LOSBG are verified in practical circumstance.

5. CONCLUDE

In this paper, we proposed a novel low-rank representation
based method LOSBG which can learn an optimal structured
bipartite graph to solve the subspace clustering problem. Un-
like the traditional methods which transform the clustering
problem in two steps: constructing graph and spectral cluster-
ing, LOSBG can get the segmentation result straightly from
the learned bipartite graph. Besides, due to the regularization
term of error matrix in our model, LOSBG is better at dealing
with the situation under various noise. Experiment results on
benchmark datasets demonstrates that our model has a bet-
ter performance than other classical method. And it’s easy
to see that we can also introduce sparse constraint instead of
low-rank representation to our algorithm framework.
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