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ABSTRACT

Similar to the deep architectures, a novel multi-layer ar-
chitecture is used to extend the linear blind source separation
(BSS) method to the nonlinear case in this paper. The ap-
proach approximates the nonlinearities based on a polynomial
network, where the layer of our network begins with the poly-
nomial of degree 1, up to build an output layer that can repre-
sent data with a small bias by a good approximate basis. Rely-
ing on several transformations of the input data, with higher-
level representation from lower-level ones, the networks are
to fulfill a mapping implicitly to the high-dimensional space.
Once the polynomial networks are built, the coefficient ma-
trix can be estimated by solving an l1-regularization on the
coding coefficient vector. The experiment shows that the pro-
posed approach exhibits a higher separation accuracy than the
comparison algorithms.

Index Terms— Underdetermined BSS, vanishing poly-
nomial networks, nonlinear mixture, sparse coding, time-
frequency representation.

1. INTRODUCTION

Recognizing multiple talkers from multiple observations (or
mixtures) received by a set of sensors is the task of source
separation. The problem is referred to as the underdetermined
blind source separation (UBSS) when the number of sensors
is less than that of sources [1, 2]. However, without any fur-
ther constraint, these approaches can not be applied to the
nonlinear BSS problem. It always exists infinite solutions
without the constriant of nonlinear functions [3].

Various attempts [4, 5, 6] exploiting on some further con-
straints have been involved, such as representing the distor-
tion based on some unknown parameters [7], extracting the
nonlinearity where the mixing function can be approximated
by the prior neural network [8], restricting the target function
to be smoothness [9], and mapping the nonlinear problem into
some feature space [10, 11, 12]. Despite such progress, there
are still many important open problems and unexplored ar-
eas. For instance, the captured nonlinear features are in fact
growing at an enormous rate.

In this paper, we propose to extend the UBSS method [2]
to the nonlinear case. The derivation of our algorithm is in-

spired by ideas from [13], used it for creating a novel network
architecture. The approach attempts to generate a polynomial
network, which provides a good approximate basis for the
values attained by a set of mapping functions. Similar to the
principle in deep learning, the layers of our network start with
polynomials of degree 1, which has the large bias attained by
this simple approximation network. To create the higher level
representations of the data to decrease the bias, we next make
the network deeper and deeper. Each enhancement of the de-
gree makes the layer deeper into our network. Once the deep
polynomial networks are built that can approximate the non-
linearity of the mixing function. Then, we can fulfill a simple
linear separation algorithm on top of this output. Thus, our
work presents the advantages offered by both, the deep archi-
tectures formed by a polynomial network, and the coefficient
matrix derives by sparse coding in the underdetermined sce-
nario. In particular, our network can search the number of
layers that makes deeper until the candidate dataset becomes
empty.

Section 2 reviews the nonlinear BSS, and formulates our
problem. Section 3 describes our proposed separation algo-
rithm. Section 4 shows the experimental setup and results.
Finally, the conclusions are given in Section 5.

2. NOTATIONS AND PROBLEM SETUP

The general definition of nonlinear BSS addressed in this pa-
per, is given as the following. Given a set of observed data
X = {x(1), · · · ,x(T )} ∈ Rn that are assumed to be gen-
erated from a nonlinear, instantaneous and invertible function
as

x(t) = F(s(t)), t = 1, · · · , T, (1)

where s(t) = [s(1), · · · , s(T )] ∈ Rm represent the original
sources, and the function F denotes a transformation from
Rm to Rn. To make the nonlinear problem linearly separable,
the idea is to generate a polynomial network, which provides
a good approximate basis for the values attained by a set of
mapping functions. A coefficient matrix that induces an ap-
propriate mapping Φ : Rn → H is introduced to transform
the input data in the high-dimensional space.
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We next define a multivariate polynomial that allows us to
build a polynomial network so that to capture the nonlinearity
or distortion caused by a mixing function. The multivariate
polynomial [14] performs a mapping Φ : Rn → R associated
with x ∈ Rn, as the form

Φ(x) =

∆∑
i=0

∑
α(i)

ωα(i)

n∏
j=1

x
α

(i)
j

j , (2)

where ∆ is the degree of the polynomial, and α(i) ranges
over all n-dimensional vectors of positive integers, such that∑n
j=1 α

(i)
j = i. ω ∈ R is the coefficient matrix.

Problem 1. Given a set of data {x(1), · · · ,x(T )} ∈ Rn. The
problem is to learn a polynomial network formed by a set of
basises {Φi(x(1)), · · · ,Φi(x(T ))}ki=1 of k polynomials with
a coefficient matrix. For the coefficient matrix with the col-
umn vectors [W1, · · · ,Wn]>, the demixing process can be
defined by

ŝi(t) =

k∑
j=1

WijΦj(x(t)), (3)

for all i = 1, · · · , k, where the symbol [·]> denotes the trans-
pose operator. �

Problem 1 implies that if we generate some basises, using
the deep architectures, we can represent the varieties of the
nonlinearity. Then we can fulfill a simple linear separation
algorithm on top of these outputs.

3. POLYNOMIAL NETWORKS REPRESENTATION
BASED NONLINEAR SEPARATION APPROACH

In this paper, we introduce a polynomial network that pro-
vides a good approximate basis for the values attained by a
mapping function. Then using a linear separation method, we
can estimate the coefficient matrix on top of network output.

3.1. Constructing the Polynomial Networks

The polynomial of degree 1, denoted as Φ(1) is defined by a
vector {xi(t)}ni=1 with the coefficient β ∈ Rn+1, such that

Φ(1)(x(t)) = β0 +

n∑
i=1

βixi(t) =

n∑
i=0

βiρi(x(t)), (4)

where xi(t) is the i-th channel of the observations x(t) and
we use ρi(x(t)) = xi(t) for convenience. For each time t,
considering all data points from t = 1, · · · , T , we have

Φ(1)(S) =


∑n
i=0 βiρi(x(1))

...∑n
i=0 βiρi(x(T ))

 =

n∑
i=0

βiρi(S), (5)

where ρi(S) = [ρi(x(1)), · · · , ρi(x(T ))]>.

Fig. 1: Schematic diagram of the polynomial networks, with
polynomials until degree r.

Theorem 1. The polynomial Φ(1)(S) vanishes on dataset S
if and only if Φ(1)(S) ≤ εT×1, which requires the vector β
would be in the null space of the T × (n + 1) matrix A1 =
[ρ0(S), · · · ,ρn(S)] as

A1β = [ρ0(S), · · · ,ρn(S)]β ≤ εT×1, (6)

where the tolerated value ε enables us to relax the effect of
noise, which is a vector with the same element closed to 0. �

In this paper, we prefer to search all vanishing polyno-
mials1 for dataset S = {x(t)}Tt=1 ∈ Rn, so that to build a
deep polynomial network to approximate the varieties of the
nonlinearity. These polynomials do not achieve the inversion
of nonlinear mixing directly, but provide some good approxi-
mate for the values attained by the nonlinear mixing.

The process is illustrated in Fig. 1. First, the 1st layer
is constructed by the basis that spans all values attained by
polynomials of degree 1. Using the Gram-Schmidt algorithm,
we can generate some orthogonal polynomials which require

γ
(1)
i (S) = ρi(S)−

∑
η∈F0

〈ρi(S),η(S)〉η(S), (7)

where the input is dataset C1 = {ρi(S)} for all i = 1, · · · , n
and we initialize F0 = {η(S) : η(S) = ρ0(S)/‖ρ0(S)‖}
and V0 = ∅, respectively. If a proper combination can
be searched, which lead to γ

(1)
i (S) almost vanishing on

the data S, we update V1 ← V1

⋃
{γ(1)

i (S)}. Otherwise,
F1 ← F1

⋃
{γ(1)

i (S)/‖γ(1)
i (S)‖} is updated. Thus, V1 and

F1 are referred to as the sets of vanishing polynomial and
non-vanishing polynomial in degree 1, respectively. At the
end of this process, F1 contains a set of non-vanishing linear
combinations which will be used for generating the 2nd layer.

Therefore, the polynomial network starts with polynomi-
als of degree 1, which have the large bias attained by this

1The function is referred to as vanishing polynomial of S iff ‖Φ(x)‖ ≤ ε
for ∀x ∈ S, where ε is tolerate value and ‖ · ‖ denotes the Euclidean norm.
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simple approximate network. To create the higher level rep-
resentations of the data to decrease the bias, we next make the
network deeper and deeper. Each enhancement of the degree
makes the layer deeper into our network. In particular, our
network can search the number of layers that are added until
the non-vanishing set F becomes empty.

3.1.1. Generating the Polynomials of Higher Degree

To exploit the layer attained by a higher level representation,
the above progress continues to generate the polynomials
of higher degree. For a polynomial of degree r, the set
Cr = {ρi1,··· ,ir (S)}ni1,··· ,ir=1 is formed by ρi1,··· ,ir (S) =

[ρi1,··· ,ir (x(1)), · · · , ρi1,··· ,ir (x(T ))]>, where ρi1,··· ,ir (x(t))
= xi1(t)xi2(t) · · ·xir (t). To obtain the orthogonal polyno-
mial of degree r, we have

γ
(r)
i (S) = ρi1,··· ,ir (S) (8)

−
∑

η(r−1)∈Fr−1

〈ρi1,··· ,ir (S),η(r−1)(S)〉η(r−1)(S),

whereFr−1 = {η(r−1)
j =

ρ
(r−1)
j

‖ρ(r−1)
j ‖

} for all j = 1, · · · , |Fr−1|,

and |Fr−1| denotes the number of elements in the set Fr−1.
Up to the creation of the output layer, (8) can be batched

by using singular value decomposition (SVD). Given a ma-
trix Ar formed by Ar = [γ

(r)
1 (S), · · · ,γ(r)

|Fr−1|(S)]. By us-

ing SVD, the matrix Ar ∈ RT×|Fr−1| can be decomposed as
Ar = LDU>. Using a simple matrix operation, we have

ArU =
[
γ

(r)
1 (S), · · · ,γ(r)

|Ft|(S)
]

U = LD, (9)

where L = [l1, · · · , lT ] of li ∈ RT . The dual representation
is given by

Φ
(r)
i (S) =

|Fr−1|∑
j=1

Uj,iγ
(r)
j (S) =

T∑
j=1

Dj,ilj = Di,ili, (10)

where i = 1, · · · , |Fr−1|. Thus, Φ
(r)
i (S) is denoted as a van-

ishing polynomial, we only need to check whether each ele-
ment of matrix Di,i is less or equal to the tolerate value ε.

3.2. Coefficient Matrix Identification

Once the basis {Φi(x(1)), · · · ,Φi(x(T ))}ki=1 was generated,
the nonlinear problem can be linearly separable in (3). We
use the UBSS method [1] in these high-dimensional spaces
spanned by the basis, we can obtain the coefficient matrix W.
Using discrete-time short-time Fourier transform (STFT), the
linear BSS (3) can be transformed into the time-frequency
(TF) domain

DΦ(t, ω) = W̃D̂si(t, ω), (11)

where DΦ(t, ω) = [DΦ1(t, ω), · · · ,DΦn(t, ω)]> is the mix-
ture signals in the TF domain and D̂s(t, ω) = [D̂s1(t, ω), · · · ,
D̂sm(t, ω)]> is the STFT vector of the source signals.

Assumption 1. Given a source signal si, its STFT trans-
formation is denoted as Dsi in the TF domain. There al-
ways exists Dsi that is dominant at all (t, ω) TF points, i.e.,
|Dsi(t, ω)| � |Dsj (t, ω)| for ∀j 6= i. �

The assumption implies that all sources are disjoint in the
TF domain, i.e., there only one source is active on the TF
point (t, ω). Then, (11) can be rewritten as

DΦ(t, ω) = D̂si(t, ω)W̃i, (12)

where the TF feature matrix DΦ(t, ω) can be represented by
the i-th column vector W̃i with a multiplicative coefficient
Dŝi(t, ω). This implies that the target matrix W̃i can be a
linear combination of a few numbers of sample points from
the matrix DΦ(t, ω) with the coefficient D̂si(t, ω).

We next formulate the problem of (12) by using a sparse
direction for TF representation of the mixture TF matrix
DΦ(t, ω). Let π1,π2, · · · ,πL be the reshaped vector of all
the mixture TF matrix DΦ, and L is the number of TF points

(t, ω). We can define a one row vector Π
4
= [π1, · · · ,πL]

that is row-wise stacked together to be generated by the mix-
ture TF matrix DΦ at all (t, ω).

The further solution of (13) is the sparse representation of
the TF feature vector DΠ, that will later construct the estima-
tion of the coefficient matrix in the TF domain.

J (ci, η) =
1

2
‖πi −DΠci‖22 + η‖ci‖1, (13)

subject to cii = 0, where η > 0 is a scalar parameter to bal-
ance the trade-off between the sparsity and reconstruction er-
ror. Once a sparse coding problem is built, the solution can be
obtained by solving the convex optimization problem. Here,
we use the l1-Homotopy method in [15] to calculate the re-
dundant dictionary ci of (13).

3.3. Source Recovery

Since the mixing matrix is not irreversible in the UBSS [16],
the recovered sources also need to be estimated even though
the mixing matrix has been known. Therefore, we derive the
sub-matrix Ŵ on the following assumption.

Assumption 2. At most n− 1 sources among m sources are
active at each TF point for m > n. �

Definition 1. Given a matrix W of size n×m, for any sub-
matrices Ŵi composed of size n × (n − 1), there are

(
m
n−1

)
elements included in the set of Ŵ, that is

Ŵ = {Ŵi|Ŵi = [Ŵλ1 , · · · ,Ŵλm−1
]}. (14)
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The condition is easily met and hence not restrictive for
audio data [1].

Thus, for any given mixture TF vector DΦ(t, ω), there
must exist an optimal sub-matrix Ŵ∗ = [Ŵλ1

, · · · ,Ŵλm−1
]

at each TF point (t, ω), such that

Ŵ∗ = arg min
Ŵi∈Ŵ

∥∥∥DΦ(t, ω)− ŴiŴ
†
iDΦ(t, ω)

∥∥∥
2
, (15)

where Ŵ†
i is the pseudo-inverse of Ŵi, which is defined as

Ŵ† = (Ŵ>Ŵ)−1Ŵ>.
Thus, each source in the TF domain can be estimated by

D̂sj (t, ω) =

{
Ŵ†
∗DΦ(t, ω), if j = λi,

0, otherwise,
(16)

where λi is the index number of the optimal sub-matrix
that implies the non-zero element of D̂sj at each TF point.
The source estimator ŝi(t) is then obtained by converting
D̂si(t, ω) to the time domain using the inverse STFT.

4. EVALUATION

4.1. Experimental Setup

The experiments are designed on the audio data of real-world
that are available from the literature [2]. The mixture sig-
nals are assumed to be mixed nonlinearly. Each observation
is a linear mixture of the nonlinear distortion of sources, such
as an exponential transformation es1(t), · · · , esm(t). The lin-
ear mixture is derived from a matrix that randomly generated
from the uniform distribution U [−1, 1]. Example 1 separates
n = 3 observations transformed from m = 4 independent
speech signals. The noise is assumed to be generated from a
white and Gaussian distribution with some uncorrelated data
points whose variance is usually assumed to be uniform. The
results are shown on the signal-to-noise power ratio (SNR)
with the range from 5 dB to 45 dB. Example 2 uses the ob-
servations generated from the enhancement of the undeter-
mined level, i.e., the number of sources is increased from 4 to
7 while the number of observations is kept as 3. All record-
ings were sampled to 16 kHz. The STFT frame size is set
as 1024 points, time frame shift equals to 256, and Hanning
window is used as the weighting function. To reduce the ran-
domness effect, the simulation is repeated 20 times.

We compared with two algorithms, the UBSS method
based on the sparse coding [2], and the underdetermined
convolutive BSS (UCBSS) method2 based on the subspace
representation [17]. The normalized mean squared error
(NMSE) [2] is used to measure the separation accuracy,
which is defined by

NMSE(s, ŝ) = 10 log10

(
1

m

m∑
i=1

min
δ

‖si − δŝi‖22
‖si‖22

)
, (17)

The scalar δ is used for controlling the scalar ambiguity.
2https://slsp.kaist.ac.kr/xe/index.php?mid=software
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Fig. 2: The separation results on comparisons of the proposed
PNUBSS method, the UBSS method [2], and the UCBSS
method [17]. (a) Over the different SNR levels, and (b) over
the different number of sources.

4.2. Results

In Fig. 2 (a), the results show the NMSE on the differ-
ent SNR levels. Benefiting from the polynomial networks
formed of the good approximate basis, the proposed poly-
nomial networks-based underdetermined blind source sepa-
ration (PNUBSS) algorithm can provide more accurate per-
formance on the source recovery. Due to the polynomial
networks, the nonlinearity can be approximated by a set of
basis. As we can see, the NMSE measure on both the UBSS
and the UCBSS methods also decreases with SNR being in-
creased. The proposed PNUBSS consistently provides good
results over the whole SNR range, suggesting the proposed
algorithm is robust.

In Fig. 2 (b), the performance on the source recovery is
decreasing as the underdetermined level is enhancing, i.e.,
more sources are available. The UCBSS algorithm is not
available when the number of sources exceeds two than that
of observations.

5. CONCLUSIONS

This paper introduces a novel nonlinear BSS algorithm. The
main contribution of the novel separation approach is to pro-
pose a polynomial network to approximate the varieties of
the nonlinearity. The approach attempts to generate a polyno-
mial network, which provides a good approximate basis for
the values attained by a set of mapping functions. The layers
of our network start with polynomials of degree 1, which have
the large bias attained by this simple approximate network.
To create a higher level representation of the data to decrease
the bias, we next make the network deeper and deeper. Each
enhancement of the degree makes the layer deeper into our
network. We then exploit the linear separation on top of these
outputs. Thus, our work presents the advantages offered by
both, the deep architectures formed by a polynomial network,
and the coefficient matrix derived by sparse coding in the un-
derdetermined scenario. In particular, our network can search
the number of layers that makes deeper until the candidate
dataset becomes empty.
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