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ABSTRACT

Discriminative Dictionary Learning (DL) methods have been
widely advocated for image classification problems. To fur-
ther sharpen their discriminative capabilities, most state-of-
the-art DL methods have additional constraints included in
the learning stages. These various constraints, however, lead
to additional computational complexity. We hence propose an
efficient Discriminative Convolutional Analysis Dictionary
Learning (DCADL) method, as a lower cost Discriminative
DL framework, to both characterize the image structures and
refine the interclass structure representations. The proposed
DCADL jointly learns a convolutional analysis dictionary and
a universal classifier, while greatly reducing the time com-
plexity in both training and testing phases, and achieving a
competitive accuracy, thus demonstrating great performance
in many experiments with standard databases.

1. INTRODUCTION

In the past decade, sparse representation has been widely in-
voked in many contexts and has been successfully applied to
address a variety of image processing and computer vision
problems [1, 2]. It generally aims to represent data by a lin-
ear combination of a few atoms chosen from a data-driven
dictionary. To pursue such a sparse representation for a par-
ticular signal dataset, one well known approach is the Synthe-
sis Dictionary Learning (SDL) [3, 4], which recovers the sig-
nal by learning a dictionary with corresponding coefficients.
SDL can capture complex local structures of images and yield
state-of-the-art performance in many image processing prob-
lems. Moreover, to overcome the shortcomings of classical
patch-based sparse representation and better translation in-
variance, convolutional filters were also introduced in SDL
for signal and image processing applications [5, 6, 7]. Due to
this success in image processing, SDL has also been explored
in image inference problems, such as image classification[8,
2, 9, 10], by augmenting with some supervised learning con-
straints, thereby enhancing the discriminative ability of the
resulting dictionaries or sparse representations. In [9], Jiang
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et al. introduced a consistent label constraint together with a
universal linear classifier to enforce similarity among repre-
sentations within the same class. Yang et al. [10] used Fisher
Information criterion in their class-specific reconstruction er-
rors to compose their approach.

Besides SDL, Analysis Dictionary Learning (ADL) [11,
12] has recently been of interest on account of its fast encod-
ing and stability attributes. ADL provides a linear transforma-
tion of a signal to a nearly sparse representation. Inspired by
the SDL methodology in image classification, ADL has also
been adapted to the supervised learning problems by promot-
ing discriminative sparse representations [13, 14]. In [13] ,
Guo et al. incorporated both a topological structure and a rep-
resentation similarity constraint to encourage a suitable class-
selective representation for a 1-Nearest Neighbor classifier.
Tang et al. [15] transformed the original sparse representa-
tions with refined and discriminative properties achieved by
a jointly learned linear classifier to yield a Structured ADL
(SADL) scheme.

In all above methods, both the structure of images and
the structure between different classes play important roles
in the classification task. Such structures increase the accu-
racy, but they also require a substantial amount of computa-
tion and time for training and testing. It is hence desirable
to forego this potentially costly structure-promoting regular-
ization and to instead embed the discriminating characteris-
tics of ADL methods in the dictionary formulation itself. To
this end, we introduce a convolutional mapping within the
ADL framework, and embed its resulting feature resolution
using its translation invariant structure. We thus propose the
Discriminative Convolutional ADL (DCADL) method, which
amounts to jointly learning a convolutional ADL and a linear
classifier to ensure the capability of characterizing structures
among individual images and across classes, while taking ad-
vantage of fast ADL encoding. To reduce the excessive train-
ing time, we propose a novel algorithmic technique which
transforms convolution to a low-cost matrix multiplication.
This turns DCADL into an efficiently solvable conventional
discriminative ADL framework.

In Section 2, we describe the generic Discriminative DL
framework, followed by the DCADL framework and efficient
solution detailed in Section 3. In Section 4, we validate our
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algorithm with standard databases, prior to the conclusions
remarks in Section 5.

2. DISCRIMINATIVE DICTIONARY LEARNING

2.1. Notation

In this paper, uppercase and lowercase letters respectively de-
note matrix and vectors throughout the paper. The transpose
and inverse of a matrix are respectively denoted by the super-
scripts T and −1. The identity matrix is denoted by I .

2.2. Discriminative Dictionary Learning

Let X = [x1, . . . , xn] denote a training data matrix of C
classes and Ω be an associated dictionary. The conventional
Discriminative Dictionary Learning (DL) generally aims to
learn efficient and distinct sparse representations U by using
feedback from label information. The state-of-the-art Dis-
criminative DL methods [9, 10, 13, 15] generally belong to
the following optimization framework,

arg min
Ω,U

f(Ω, U,X) + λ‖U‖p + ΦS(Ω, U, Y ) + ΦG(Ω, U, Y,W ), (1)

with f(Ω, U,X) = 1
2‖ΩX −U‖

2
F or f(Ω, U,X) = 1

2‖X −
ΩU‖2F , respectively corresponding to ADL and SDL. Fur-
thermore, λ > 0 is a hyper-parameter, ‖ · ‖p is either l0
or l1 norm to ensure the sparsity of U , and W is a classi-
fier. Finally, Y ∈ RC×n represents the labels of the training
data, where Yij = 1 if and only if image j belongs to class
i. The dictionary Ω and the resulting sparse data representa-
tion U are jointly learned and adapted for a higher discrimi-
native power by some structure-promoting constraint function
ΦS(Ω, U, Y ) with a general classification objective functional
ΦG(Ω, U, Y,W ).

In this paper, we simplify the Discriminative DL frame-
work in Eq. (1) to the following by replacing ΦS(Ω, U, Y ) by
matrix reshaping operators:

arg min
Ω,U

f(Ω, U,X) + λ‖Û‖p + ΦG(Ω, Ũ , Y )

s.t. Û = RS1(U); Ũ = RS2(U),
(2)

where RS1, RS2 are some matrix reshaping operators. In or-
der to avoid the direct convolutional computation and expen-
sive costs of updating ΦS(Ω, U, Y ) in each iteration, Eq. (2)
significantly improves the DCADL efficiency in both training
and testing phases, while maintaining a high classification ac-
curacy, as later substantiated in Section 4.

3. DISCRIMINATIVE CONVOLUTIONAL ANALYSIS
DICTIONARY LEARNING

For clarity, we first formulate an intuitive DCADL frame-
work, and later in Section 3.1, and rewrite it to match the

structure of that in Eq. (2). This intuitive DCADL framework
is defined as follows,

arg min
ωi,ui

j ,W

n∑
j=1

m∑
i=1

(
1

2
‖ωi ∗ xj − uij‖22 + λ1‖uij‖1

)
+
λ2

2
‖Y −WŨ‖2F ,

s.t. ‖ωi‖22 ≤ 1; ∀i = 1, . . . ,m, Ũ =

u
1
1 · · · u1

n
...

. . .
...

um1 · · · umn

 ,
(3)

where ∗ is convolutional operator, ωTi ∈ Rs2 is the ith atom
(row) of size s × s in the analysis dictionary Ω, xj ∈ Rr is
the jth image, and uij ∈ Rp is the ith response map of the
jth image corresponding to the convolution of the ith atom.
Similarly to Eq. (2), Y ∈ RC×n is the label matrix of training
images, and W ∈ RC×mp is the associated linear classifier.

To elaborate on the underlying principle in Eq. (3), note
that this optimization leads to a set of 2D linear shift-invariant
filters, represented by the vectors ωi , producing response
maps ωi ∗ xj from the images xj . The response maps are
nearly sparse in the sense that they possess a suitable sparse
approximation given by the vectors uij . Furthermore, the re-
sponse maps are in turn fed to a linear classifier to generate
correct labels in Y . Imposing sparsity on the response maps
provides a better preservation of distinct and valuable infor-
mation for class-discrimination. Also, note that each image
point in the image space is expanded into a high-dimensional
vector in the response-map space. In such a response-map
space, a one-against-all classifier is also jointly learned to ex-
plore the label information and guide the interclass structure
of representations. We observe that DCADL and a one-layer
Convolutioanl Neural Networks (CNN) exploit similar princi-
ples for extracting relevant class-specific information. How-
ever, one-layer CNN alternatingly minimizes the first convo-
lutional term and the second classification term, while our al-
gorithm jointly learns these two terms. We omit a more care-
ful discussion in favor of space.

3.1. Discriminative Convolutional Analysis Dictionary
Learning

Noting that conventional ADL formulations rely on matrix
multiplication (such as Eq. (2)) for efficient solution, we re-
formulate our convolutional ADL problem in Eq. (3) to be
solved in a similar way by assuming that images have no zero-
padding. In this case, we segment an image xi into p patches
[xi1 , . . . , xip ] with s × s pixels, being of the same size as
the atom, and let X̄ = [x11

, . . . , x1p
, . . . , xn1

, . . . , xnp
] ∈

Rs2×np and

Ū =

u
1
11
· · · u1

1p
· · · u1

n1
· · · u1

np

...
. . .

...
. . .

...
. . .

...
um11

· · · um1p
· · · umn1

· · · umnp

 ∈ Rm×np.
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The problem in Eq. (3) can then be rewritten in the same form
as in Eq. (2):

arg min
Ω,Ū ,W

Û,Ũ

1

2
‖ΩX̄ − Ū‖2F + λ1‖Û‖1 +

λ2

2
‖Y −WŨ‖2F ,

s.t. ‖ωi‖22 ≤ 1; ∀i = 1, . . . ,m,

Û =

u
1
11

u2
11
· · · umn1

...
...

. . .
...

u1
1p

u2
1p
· · · umnp

 , Ũ =

u
1
11
· · · u1

n1

...
. . .

...
um1p

· · · umnp

 .
(4)

It is noteworthy that Ū ∈ Rm×np, Û ∈ Rp×mn and Ũ ∈
Rmp×n are merely different reshapings of U = [uijk ] ∈
Rp×n×m,∀i = 1, . . . ,m, ∀j = 1, . . . , n, ∀k = 1, . . . , p,
where uijk is the vectorized response map of the ith atom and
the pth patch of the jth image.

3.2. Algorithmic Solution

Although our optimization problem in Eq. (4) is non-covex,
it is still a multi-convex problem. Therefore, we may reliably
update the variables by the block-coordinate descent method.
We follow the updating steps in each iteration of our algo-
rithm, which are summarized in Algorithm 1.

Algorithm 1 DCADL
Input: Training data X̄ = [x11 , . . . , xnp ], classes labels Y ,

parameter λ1, λ2, λ3, λ4, and maximum iteration T ;
Output: Ω, U , and W ;

1: Initialize Ω, U , and W ;
2: while not converged and t < T do
3: t=t+1; % ρ is learning rate.

4: Update Ūt+1 by Ūt+1 = Ūt − ρ(Ūt − ΩX̄);
5: Ũt = R1(Ūt+1); %R1(·) is reshaping operator.

6: Update Ũt+1 by Ũt+1 = Ũt − ρ(λ2W
T (L−WŨt));

7: Ût = R2(Ũt+1); %R2(·) is reshaping operator.

8: Update Ût+1by Ût+1 = τρλ1
(Ût);

9: Ũt+1 = R−1
2 (Ût+1);

10: Update Wt by Wt+1 = λ2Y Ũt+1(λ2Ũt+1ŨT
t+1 +λ3I)−1;

11: Ūt+1 = R−1
1 (Ũt+1); %R−1

1 , R−1
2 is inverse reshaping operator,

12: Update Ωt by Ωt+1 = Ūt+1X̄
T (X̄X̄T + λ4I)−1;

13: Normalize Ωk by ωTi =
ωT

i

‖ωT
i ‖2

, if ‖ωTi ‖22 > 1,∀i;
14: end while

4. EXPERIMENTS AND RESULTS

Four widely used visual classification datasets, Extended
YaleB[16], AR[17], Caltech101[18], and Scene15[19], have
been applied to evaluate our proposed DCADL.

In our experiments, a comprehensive evaluation with clas-
sification accuracy, training time and testing time is provided.

The testing time is computed by the average processing time
to classify a single image.

To evaluate our proposed DCADL, we carry out a com-
parative study with the following methods: The first one is
ADL+SVM[20], which serves as a baseline. LC-KSVD [9]
is a state-of-the-art SDL. Then SADL[15] and DADL[13] are
up-to-date ADL approaches. The last method, DPL[21] is a
hybrid technique of SDL and ADL.

The parameters λ1, λ2, λ3, λ4 and T are chosen by a 10-
fold cross validation on each dataset. The parameters of all
competing methods are also optimally tuned to ensure their
best performance. The different atom numbers employed in
each approach will be listed in parentheses in our Tables.
Moreover, we show the reported accuracy for the benchmark
methods in their original paper in parentheses with the appro-
priate citation. The difference in the accuracy between our
implementation and the originally reported one might be due
to different segmentations of the training and testing samples.

Fig. 1. Examples of Four Different Datasets.

4.1. Extended YaleB

There are in total 2414 frontal face images of 38 people. We
cropped each image to 48×42 pixels as illustrated in the left-
up corner of Figure 1. We randomly choose half of the images
for training, and the rest for testing. In our experiment, each
analysis atom is 12×12 pixels and convolves with each image
with the stride of 6. The dictionary size of our DCADL is 50
atoms, λ1 = 0.001, λ2 = 0.2, λ3 = 0.1, λ4 = 0.1 and
T = 23.

Table 1. Classification Results on Extended YaleB Dataset
Methods(#atoms) Accuracy(%) Training Time(s) Testing Time(s)

ADL+SVM(1216)[20] 88.91± 0.73 274.16 6.78× 10−4

LC-KSVD(570)[9] 94.74± 0.47 183.55 1.36× 10−3

LC-KSVD(1216)[9] 66.05± 2.35 244.77 1.23× 10−3

SADL(1216)[15] 97.58± 0.39 257.31 1.53× 10−5

DADL(2031)[13] 98.33± 0.28 6.40 2.19× 10−4

DPL(1216)[21] 98.01± 0.45 20.25 2.09× 10−4

HDL-2 (-)[22] 98.50 - -
PCANet-1 (-)[23] 97.77 - -

DCADL(50) 99.57± 0.08 3.82 1.93× 10−5

The classification results, training and testing times are
summarized in Table 1. In the second part of Table 1, a 2-
layer hierarchical dictionary learning approach[22] and a 1-
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layer convolutional network[23] are also included for com-
parison. Both of these two methods also worked on raw pix-
els of images. Our proposed DCADL method achieves the
highest classification accuracy with the shortest training time
and an extremely fast testing time, while securing an at least
1% greater accuracy relative to others’.

4.2. AR Face

The AR Face dateset consists of 2600 color images of 50 fe-
males and 50 males . We then cropped each image to 55×40,
which is shown in the right-up corner of Figure 1. 20 images
per class are randomly selected to form a training set, and oth-
ers are used for testing. Similarly to the settings in Extended
YaleB, the convolutional analysis atom size is also 12 × 12
pixels with the stride of 6. The dictionary size of our DCADL
is 50 atoms, λ1 = 0.0001, λ2 = 0.005, λ3 = 0.0001, λ4 =
1.3 and T = 37.

Table 2. Classification Results on AR Dataset
Methods(#atoms) Accuracy(%) Training Time(s) Testing Time(s)

ADL+SVM(2000)[20] 85.35± 2.34 1301.97 9.05× 10−3

LC-KSVD(500)[9] 91.97± 1.09 275.18 3.93× 10−4

LC-KSVD(2000)[9] 67.70± 5.14 253.55 2.31× 10−3

SADL(2000)[15] 98.55± 0.33 69.93 2.88× 10−5

DADL(2211)[13] 99.20± 0.28 10.42 4.26× 10−4

DPL(2000)[21] 99.03± 0.32 24.03 8.45× 10−5

CNN-3 (-)[24] 96.50 - -
DCADL(50) 98.93± 0.43 14.52 2.78× 10−5

The classification results as well as the training and testing
times are summarized in Table 2. The accuracy of our pro-
posed DCADL is barely lower than DADL and DPL, but it is
still much higher than other methods with a very quick train-
ing and testing time. It is even better than the performance of
a 3-layer Convolutional Network[24], which also worked on
the raw pixel of the AR dataset. Though DADL has a faster
training time than DCADL, its testing time is still 10 times
slower than ours, and it needs to calculate a weight matrix
in advance to keep its crucial topological structure, which is
time consuming.

4.3. Caltech101

The Caltech101 dataset includes 101 different object cate-
gories and a non-object category, as shown left-down cor-
ner of Figure 1. The standard bag-of words+spatial pyra-
mid matching (SPM) framework [19] is used to calculate the
SPM features. PCA is finally applied to the vectorized SPF
to reduce its dimension to 3000. In our experiment, 30 im-
ages per class are randomly chosen as training data, and other
images are used as testing data. All above steps and set-
tings follow [9]. As features are vectors, our DCADL uses 1-
dimensional convolution for such features. The convolutional
analysis atom size is 1500× 1 with step of 1500. The dictio-
nary size of our DCADL is 152, λ1 = 0.0001, λ2 = 0.01,

λ3 = 0.006, λ4 = 0.15 and T = 48.

Table 3. Classification Results on Caltech101 Dataset
Methods(#atoms) Accuracy(%) Training Time(s) Testing Time(s)

ADL+SVM(3060)[20] 66.75± 1.08 1943.47 1.33× 10−2

LC-KSVD(3060)[9] 73.67± 0.93 (73.6[9]) 2144.90 2.49× 10−3

SADL(3060)[15] 74.17± 0.49 ([15]) 1406.68 4.76× 10−5

DADL(3061)[13] 71.77± 0.44 (74.6[13]) 26.29 7.90× 10−4

DPL(3060)[21] 71.64± 0.50 (73.9[21]) 64.33 3.79× 10−4

DCADL(152) 74.17± 0.42 17.55 2.52× 10−5

The classification results, training and testing times are
summarized in Table 3. DCADL achieves the highest perfor-
mance again in our experiments, achieving the fastest training
and testing time. Though its accuracy is slightly lower than
the reported one in DADL[13], DCADL is at least 1.5 times
faster than DADL in training and testing time.

4.4. Scene15

The Scene15 dataset has 15 different scene categories, which
are shown righ-down corner of Figure 1. We extracted the
SPM features for Scene 15 dataset by the same procedures as
for Caltech 101. 100 images per class are randomly picked
as training data, and the rest is used for testing data. The
settings and steps also follow [9]. Similarly to the setting
of Caltech101, the convolutional analysis size of DCADL
is 1500 × 1 with a 1500 step. The dictionary size is 100,
λ1 = 0.01, λ2 = 0.5, λ3 = 0.09, λ4 = 0.55 and T = 15.

Table 4. Classification Results on Scene15 Dataset
Methods(#atoms) Accuracy(%) Training Time(s) Testing Time(s)

ADL+SVM(1500)[20] 80.55± 3.20 494.41 1.73× 10−4

LC-KSVD(1500)[9] 99.21± 0.18 (92.9[9]) 390.22 1.81× 10−3

SADL(1500) 98.40± 0.21 (-) 219.80 2.41× 10−5

DADL(3001)[13] 97.81± 0.27 (98.3[13]) 15.00 4.62× 10−4

DPL(1500)[21] 98.35± 0.17 (97.7 [13]) 8.83 5.67× 10−5

DCADL(50) 98.41± 0.26 2.59 1.00× 10−5

The classification results of each method are summarized
in Table 4. Our accuracy is barely lower than LC-KSVD,
but is still higher than all other methods and the reported per-
formance in LC-KSVD. In addition, compared with all other
methods, DCADL still registers a much greater training and
testing time gain.

5. CONCLUSIONS

We proposed an efficient discriminative convolutional ADL
method for classification tasks. Our DCADL consists of
learning a convolutional ADL together with a universal
linear classifier. We further transformed the optimization
framework of DCADL to a more efficient discriminative DL
framework by eliminating structural constraint costs, while
preserving the discriminative power. Our extensive numeri-
cal studies show the DCADL exhibits its highly competitive
accuracies with significant efficiency.
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