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ABSTRACT

Classification of radar observations with machine learning
tools is of primary importance for the identification of non-
cooperative radar targets such as drones. These observa-
tions are made of complex-valued time series which possess
a strong underlying structure. These signals can be pro-
cessed through a time-frequency analysis, through their self-
correlation (or covariance) matrices or directly as the raw
signal. All representations are linked but distinct and it is
known that the input representation is critical for the success
of any machine learning method. In this article, we explore
these three possible input representation spaces with the help
of two kinds of neural networks: a temporal fully convolu-
tional network and a Riemannian network working direcly
on the manifold of covariances matrices. We show that all
the considered input representations are a particular case of a
generic machine learning pipeline which goes from the raw
complex data to the final classification stage through con-
volutional layers and Riemannian layers. This pipeline can
be learnt end-to-end and is shown experimentally to give the
best classification accuracy together with the best robustness
to lack of data.

Index Terms— Neural networks, Radar, Information ge-
ometry, Riemannian machine learning

1. INTRODUCTION AND RELATED WORKS

The classification of non-cooperative targets with machine
learning tools is a task of interest for radar applications, in
particular with the numerous drones which are more and more
widespread in the airspace. As the success or failure of ma-
chine learning often depends on the input representation of
the data, the study and evaluation of the various input space is
critical. In their raw and most general representation, the sig-
nals we consider take the form of a complex-valued time se-
ries, representing a temporal evolution of phase and amplitude
associated to a given physical phenomenon. In this paper, we

focus on radar waves, but the developed insights remain valid
for any signal following the above definition. The analysis of
any such signal is not usually done on its raw temporal form
but rather on a spectral or mixed temporal-spectral represen-
tation, i.e. a Fourier transform [1]: as such, perhaps the most
popular representation for radar data analysis is the synony-
mous micro-Doppler signature [2], which takes the form of
an image where spatial locality is replaced by temporal and
frequencial locality. Recent radar classification schemes thus
apply modern Computer Vision algorithms on micro-Doppler
signatures, such as convolutional neural networks [3] (CNNs)
or recurrent networks [4] (RNNs).

Furthermore, within the theoretical developments in the
time-frequency literature lies the central concept of auto-
correlation, or that of covariance [5] [6]: intuitively, much
of a signal’s characteristics is underpinned by how the differ-
ent points in time correlate with each other. As such, more
recent research has focussed on studying the correlations
themselves, more specifically the covariance matrices sam-
pled from an underlying process, which is naturally modeled
as Gaussian [7] [8] [9]. Covariance matrices possess a par-
ticular geometric structure, that of being symmetric positive
definite (SPD), i.e. they belong to the SPD matrix Rieman-
nian manifold. The statistical analysis of manifold-valued
data requires to generalize usually straightforward concepts
in machine learning to a differential geometric, Riemannian
theoretical framework, and consitutes the main goal of the
field of Information Geometry [10] [11][12]. Initial develop-
ments in classification on S+∗ focussed on minimum distance
to mean (MDM) approaches [13] [14]. More recent proposals
introduced a neural network, called SPDnet, respecting the
manifold geometry [15]. As an SPDnet directly deals with
the covariance of data, we also call it a second-order model.

We have thus two different classification methods, first
and second order neural networks, which can work on differ-
ent representations of the input data: the convolutional net-
work can use the raw complex signal or a time-frequency
representation and the SPDNet works on a covariance matrix
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which can be computed either from the raw complex signal,
on the frequency features of a spectrogram or on the feature
map built by convolutional layers.

In this paper, we propose a machine learning pipeline
which encompasses all mentioned natural representations of
a time series. More specifically, we describe a neural network
architecture which combines a first order part, and a second
order part and we show that the aforementioned represen-
tations can be seen as bifurcations inside this architecture,
obtained by computing a covariance matrix at different stages
of the architecture. The earlier bifurcation being the use of a
SPDNet directly on the auto-correlation matrix and the latest
being the end-to-end learning of the time-frequency represen-
tation through convolution layers before the use of a SPDNet.
We show experimentally that the complete end-to-end archi-
tecture leads to the best classification accuracy and to the best
robustness to lack of data (by reducing the size of the training
set to only 5% of its original size).

Our contributions are the following:

• an analysis of the possible input representations of a
complex-valued time series,

• a neural network architecture which encompass these
representations,

• an experimental analysis on a radar dataset, with exper-
iments focusing on the size of the training set.

The following sections are organized as follows. First we
recall the machine learning tools used in our pipeline (com-
plex convolution, SPDNet and fully convolutional networks).
Secondly we describe our pipeline and the possible bifurca-
tions leading to different input representations. Finally, we
show experimental results on a radar dataset.

2. LEARNING ON RADAR REPRESENTATIONS

Radar data can be seen from various viewpoints, all rooted
in sound theoretical background, and different deep learning
models may operate independently on the different represen-
tations. The first one is the raw complex time series, for which
complex filter banks may be learned in an end-to-end fashion.
The second is the spectrogram, or windowed Fourier trans-
form, upon which modern CNNs can be applied. The third is
the auto-correlation, or covariance, of the time series, which
requires a particular kind of networks, called SPDnets.

2.1. Learning complex filter banks

First we recall the discrete Fourier transform (DFT) of a dis-
crete complex signal x of duration N :

∀k ≤ N, DFTx(k) =
∑
l≤N

x(l)e−2iπk l
N (1)

Thus, a windowed Fourier transform of duration n is
exactly equivalent to the convolution of the signal by the n
Fourier atoms, which are the n base vectors of n-th-roots of
the unit, (e−2iπk ·

n )k≤n. From this point of view, the DFT
can be seen as an initial convolutional layer in a CNN deal-
ing directly with spectrograms. Thus, instead of fixing the
DFT, we prepend to a micro-Doppler CNN a 1D complex
convolutional layer initialized with the Fourier atoms, and
allow the weights to be learnable, i.e. we allow Fourier atoms
to vary to best accomodate the optimization crtiterion. By
doing so, we allow additional flexibility in the learning pro-
cess, all the while utilizing the expert knowledge of a proper
time-frequency representation. On a technical note, the opti-
mization of a complex convolution layer in itself constitutes a
digression to traditional Machine Learning, and is described
in [16].

2.2. Learning on SPD matrices

The particularity of SPD matrices lies in their inherent be-
longing to the curved Riemannian manifold S+∗ : as such,
not taking the underlying geometric information into account
leads to poor results in practice. Here we briefly describe
the recently introduced SPDnets [15]: similarly to a classical
neural network, an SPDnet aims at building a hierarchical se-
quence of more compact and discriminative manifolds. More
specifically, an input matrix X(l−1) at layer (l − 1) yields
P (l) through a bilinear mapping (BiMap layer), which in turn
yields X(l) at layer (l) through rectified eigenvalues (ReEig
layer) activations according to the following formulas.

P (l) = W (l)TX(l−1)W (l) with W (l) ∈ O(nl−1, nl)

X(l) = U (l) max(Σ(l), εIn)U (l)T with P (l) = U (l)Σ(l)U (l)T

(2)

In the equations above, O(nl−1, nl) is the manifold of
semi-orthogonal rectangular matrices, P (l) = U (l)Σ(l)U (l)T

designates the eigenvalue decomposition of P (l), and ε is a
fixed threshold for the eigenvalues. The final feature manifold
is then transformed via a logarithmic mapping to a Euclidean
space (LogEig layer) to perform the actual classification. We
illustrate such an SPDnet architecture in Figure 1.

The main difficulties of learning an SPDnet lie both in the
backpropagation through structured Riemannian functions,
and in the manifold-constrained optimization. Interested
readers may refer to [17] and [18] for the detailed underlying
mechanism of an SPDnet.

2.3. Fully-temporal neural network

In this paper, we propose to build a neural architecture which
conserves a temporal structure throughout the layers, the aim
being to be able to study the covariance of the features at any
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Fig. 1. Illustration of a generic SPD neural network. Suc-
cessive bilinear layers followed by activations build a fea-
ture SPD manifold, which is then transformed to a Euclidean
space to allow for classification.

level in the network. Although convolutions do preserve tem-
poral structure, the final layers of a typical CNN being fully-
connected, that structure is lost, precisely when we reach the
most representative feature spaces in the network. The con-
servation of the temporal structure requires the usage of fully-
convolutional networks (FCN), first introduced by [19] in the
context of Computer Vision, and first adapted by [3] in the
context of radar classification. The consequence of being
fully convolutional is that, having transformed the raw com-
plex time series to a learnt spectral representation, then trans-
formed this representation in a traditional deep learning fash-
ion, we can then model and analyse the covariance of the
learnt features themselves as a final temporal representation
of the signal.

3. FULL PIPELINE

In this section we show, and illustrate in figure 2, how branch-
ing through the pipeline leads to different models on the sig-
nal representations. Four global models, noted from (1) to (4)
can be extracted from the pipeline, which we detail through-
out the section.

Covariance

SPD layers

Classifier

Conv
FFT

Conv layers

Covariance Covariance

Classifier Classifier

Classifier
Raw complex

signal

(1) (2) (3)

(4)

SPD layers SPD layers

Fig. 2. Illustration of the global pipeline proposed for the
classification of time-frequency signals. Possible bifurcations
to covariance analysis stem either from the raw data, the spec-
tral representation or the learnt temporal features. The first
convolutional layer can be either learnt fom the data or used
as a Fourier transform.

3.1. Possible bifurcations

As a first note, never bifurcating to covariance analysis
amounts to a fully-temporal convolutional network taking
as input the raw signal, sequentially building a spectral and
hierarchical feature representations. If the DFT is allowed
to be fine-tuned, we call such an architecture a filter-bank
learning network FilterNet; if not, we simply refer to it as
an FCN; both correspond to model (4) in figure 2. For clas-
sification, Global Average Pooling (GAP) is used to pool
the feature maps’ temporal evolution to a single dimension.
However, as mentioned before it is possible to branch out
at any stage, precisely thanks to the fully-temporal property
of the network. So far, we have identified three meaningful
temporal representations of the signal, i.e. three reasonable
entry points for covariance analysis: the raw complex time-
series, the spectrogram and the learnt feature representation.
Either can be modeled by their covariances and handled by an
independent SPDnet. We respectively call the corresponding
second-order architectures, SPDnet (model (1) in figure 2),
SpectroSPD (model (2) in figure 2) and the fully-temporal
covariance network FTCovNet (model (3) in figure 2).

3.2. Covariance pooling

A key module linking the first- and second-order models is the
covariance pooling (CovPool): given an n-dimensional signal
sampled during N timesteps s = (si)i≤N , where si ∈ Rn, its
covariance matrix X ∈ S+∗ (n) is estimated as:

X =
∑
i≤N

s̄is̄
T
i (3)

In the equation above, often referred to as maximum like-
lihood estimation (MLE), s̄i is the centered version of si.

One problem to be addressed is that the covariance of the
raw complex signal as is, is scalar. We overcome this problem
by considering the raw signal as a series of possibly overlap-
ping windowed elementary sub-signals, introducing effective
multi-variability through the length L of the window. Thus,
one si in equation 3 becomes [x(l) · · ·x(l+L)]T . In essence,
the windowing is similar to performing a windowed Fourier
transform, and can also be represented as a convolution, for
which the weights are no longer the Fourier atoms but ade-
quately placed zeros and ones.

Another problem may arise from the MLE estimation:
theoretically, for X to be regular, i.e. positive definite, it is
required to have n ≥ N , i.e. to observe more samples than
their dimension. This can be problematic in estimating the
covariance of the learnt features, i.e. when the si in equa-
tion 3 are the FCN’s final feature maps fi. In this scenario,
the temporal sampling has been reduced through the FCN’s
convolutions and possible poolings, while feature size could
have been set to arbitrarily large dimensions. Readers may
refer to [20], [21] and [22] for details on how to best extrap-
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Table 1. Performance comparison of SPDnets on radar data.
Train size 100% 20% 5%
SPDnet 92.6± 0.54 91.5± 0.74 88.4± 3.06
FCN 98.9± 0.44 93.4± 1.21 84.3± 2.51
FilterNet 99.4± 0.17 96.2± 1.12 87.4± 1.94
SpectroSPD 95.1± 0.49 91.9± 0.82 84.6± 3.49
FTCovNet 99.5± 0.16 97.2± 0.90 93.9± 0.74

olate covariance from CNN features: in summary, it is possi-
ble to use robust estimators such as described in [23], to split
the feature maps in smaller groups, or even to introduce an
transitional convolutional layer to learn a dimension reduc-
tion suited for the covariance pooling.

4. EXPERIMENTS

In this section we test the proposed pipeline on a simulated
radar dataset developed in [3], which consists in 3 classes
of drones, each class totaling 4 minutes of radar recordings
dispatched in 1000 signals of 250ms long sampled at 4kHz,
thus of 1000 signals of 1000 raw complex samples long, per
class. Throughout the experiments, we study the data through
a sliding 5ms window of 20 samples with 50%-overlap. For
instance, this means the covariance of one signal is estimated
over 99 windows of length 20. The same windowing is used
for covariance and spectral representations to keep compar-
isons fair. We bifurcate the introduced pipeline at various
stages in various configurations, which amounts to different
learning models which we relate to figure 2, specifically the
following: SPDnet: a SPDnet on the raw complex data’s co-
variance, estimated over 99 windows of 20 samples; Spectro-
SPD: a SPDnet on the spectrograms; FCN: a FCN on spec-
trograms as proposed in [3]; FilterNet: a FCN on raw com-
plex data as described above, where Fourier filter banks are
fine-tuned; FTCovNet: a fully-temporal covariance network,
where an SPDnet is appended to the the final feature repre-
sentation of the FCN.

Furthermore, we repeat the experiments with decreasing
amount of training data in the hope that injecting geometric
information in the learning would compensate for lack in data
volume. All networks are trained with stochastic gradient de-
scent with a 0.9 momentum and learning rate varying from
5e−3 to 5e−2, over a 5-fold cross-validation using a 20% val-
idation split. Results are displayed in table 1.

The first remark is that the SPDnet yields the worst accu-
racy when all training data is available. Intuitively, it makes
sense that it score lower than SpectroSPD and FTCovNet as
the covariance is then sampled from a more adapted or dis-
criminative model, i.e. respectively a spectrogram and FCN
learnt features. As for the FCN and FilterNet, these are deep
learning models with a total of about 14000 parameters or
more, whereas the SPDnet is the Riemannian equivalent a

Fourier Convolution
Cov

Projection

SPDnet

FCN

Fig. 3. Illustration of the fully temporal covariance network,
the best model derived from the proposed pipeline.

rather shallow network, with only about 700 parameters.
However, as training data decreases, we see the SPD

methods become better than the traditional deep models:
they seem to exhibit much higher robustness to lack of data,
which validates the usefulness of exploiting the geometric
information of the data.

Comparing the FCN and FilterNet’s performances across
the different amounts of training data, FilterNet slightly yet
consistently scores higher, validating the usage of complex
filter bank learning. Future works could include a fully com-
plex FCN.

The final observation concerns the FTCovNet, which per-
forms best across all configurations. In a sense, this model
benefits both from deep temporal feature learning, and from
covariance geometry modeling. We illustrate the full FTCov-
Net in figure 3. In practice, affordable overhead is observed
when using this larger model: one epoch lasts ∼ 7s, com-
pared to∼ 1.5s for the FCN trained on a Nvidia GTX 1070M
GPU and ∼ 3.5s for the SPDnet trained on a i7-6700HQ
CPU.

5. CONCLUSION

We have introduced a neural pipeline consisting of a first-
order fully convolutional network, onto which a second-order
SPD neural network can be appended at any stage of the first-
order model. We find that the deeper down the first-order
model, the better the performance of the global second-order
model. Furthermore, models exploiting covariance structure
seem to be more robust to lack of data than the first-order
models, even outperforming them in critically sparse sce-
narios (with only a few seconds of training data per class).
Finally, the end-to-end second-order model outperforms all
other models in any of the experimented configurations,
which points to the definite possibility of getting the best
from the two worlds: a set of discriminative features learnt
by convolutional layers, and a Riemannian processing on the
resulting temporal covariance matrices.
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