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ABSTRACT

CT image reconstruction from incomplete data, such as sparse
views and limited angle reconstruction, is an important and
challenging problem in medical imaging. This work pro-
poses a new deep convolutional neural network (CNN), called
JSR-Net, that jointly reconstructs CT images and their as-
sociated Radon domain projections. JSR-Net combines the
traditional model based approach with deep architecture de-
sign of deep learning. A hybrid loss function is adopted to
improve the performance of the JSR-Net making it more ef-
fective in protecting important image structures. Numerical
experiments demonstrate that JSR-Net outperforms some lat-
est model based reconstruction methods, as well as a recently
proposed deep model.

Index Terms— Joint spatial-Radon domain reconstruc-
tion, Sparse-view CT, Limited angle CT, Convolutional neu-
ral networks, Deep learning

1. INTRODUCTION

Deep learning is widely used in Natural language processing,
speech recognition, computer vision and many other fields
in recent years [1]. Deep models have surpassed traditional
handcrafted models and human experts in many tasks in imag-
ing science such as image classification [2, 3]. Recently, deep
learning has attracted much attention from medical imaging
community [4].

In this work, we focus on the problem of CT image
reconstruction from incomplete data [5], i.e. sparse views
and limited angle reconstruction problems. Traditional
CT image reconstruction algorithms include filtered back-
projection(FBP) [5], algebraic reconstruction technique(ART)
[6] and model based iterative reconstruction[7, 8]. However,
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these traditional method cannot effectively utilize large im-
age data sets, which limits their performance in various image
reconstruction tasks.

The CNN based models are capable of learning multi-
scale image features from large data sets with a cascade of
simple modules. Although training a deep CNN can be time
consuming, it is very efficient to use in the validation stage.
In [9], the authors parameterized the proximal operator in
the alternating direction method of multipliers (ADMM) al-
gorithm using CNN for magnetic resonance imaging (MRI).
Their deep model benefits from both the handcrafted image
reconstruction model and CNN, and is superior to some of
the regularization based MR image reconstruction models.
In [10], the authors unrolled the primal-dual hybrid gradi-
ent(PDHG) algorithm to form a feed-forward deep network
for CT image reconstruction. Then, the proximal operator
and hyper-parameters in the PDHG algorithm were both ap-
proximated by CNN learned from the training data set. This
new approach provides significant improvements in imaging
quality when compared to TV based variational model. Sim-
ilar idea was also adopted to learn an iterative scheme for the
nonlinear inverse problem of CT imaging [11].

To suppress the artifacts induced by the incomplete data
and noise, [12] proposed a joint spatial-Radon domain re-
construction(JSR) model for sparse view CT imaging. This
model can better guarantee the data consistency in Radon do-
main which leads to better image quality. Similar idea to the
JSR model is then used for positron emission tomography
[13]. To further protect image features, [14] adopted a data
driven regularization in the JSR model. More recently, a re-
weighting strategy was introduced to the JSR model to reduce
the metal artifacts in multi-chromatic energy CT [15].

In view of the advantages of CNN for unrolled iterative
scheme learning and the JSR model in CT image reconstruc-
tion, we propose a new deep architecture combining deep
CNN with JSR model. This newly proposed model will be
referred to as the JSR-Net. In order to fully exploit the advan-
tage of the JSR-Net, a hybrid loss function is introduced to
further protect important image structures in the reconstructed
images. The JSR-Net is then validated and compared on large
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CT image data set with simulated projection data for both
sparse view and limited angle problem.

2. METHOD

In this section, we first review the JSR model and its asso-
ciated iterative optimization algorithm. Then, we present the
proposed JSR-Net that is inspired by the iterative optimiza-
tion algorithm.

2.1. The JSR Model and Algorithm

The JSR model proposed in [12] reads as follows

min
u,f
F(u,f ,Y ) + ‖λ1W1u‖1,2 + ‖λ2W2f‖1,2, (1)

where the data fidelity term is defined by F(u,f ,Y ) =
1
2
‖RΓc(f −Y )‖2 + α

2
‖RΓ(Pu− f)‖2 + γ

2
‖RΓc(Pu−Y )‖2 ,

and RΓ is the restriction operator with respect to the domain
with missing data Γ. Here, Γc denotes the complement of Γ
and it indicates the region with measured data. P is the Radon
transform, Y is the measured projection data. The parameters
α and γ are properly chosen to balance the data consistency in
Radon and spatial domain. Wi, i = 1, 2, is the sparsity pro-
moting transform such as tight wavelet frame transform [16],
and ‖ · ‖ is the `2 norm. λi, i = 1, 2, is the multi-indexed
regularization parameter to balance the sparsity prior and the
data fidelity. The special norm ‖ · ‖1,2 was firstly introduced
in [17].

The optimization problem in (1) can be solved by the
ADMM algorithm with multi-blocks by introducing the aug-
mented Lagrangian function :

L(X,d, b) = F(X,Y ) +R(d)− 〈b,WX − d〉+
1

2
‖WX − d‖2µ (2)

where d =

(
d1
d2

)
, X =

(
u
f

)
, µ =

(
µ1
µ2

)
> 0, and

W =

(
W1

W2

)
. Here, b =

(
b1
b2

)
is the dual variable. Fur-

thermore, R(d) = ‖λ1 · d1‖1,2 + ‖λ2 · d2‖1,2 and ‖WX −
d‖2µ = µ1‖W1u − d1‖2 + µ2‖W2f − d2‖2 . Then the ADMM
scheme with primal and dual variables updated alternatively
can be computed with closed-form formula for each subprob-
lem. More details on transition from (1) to (2) can refer to
[12]. We omit the detailed derivation and present the algo-
rithm in Algorithm 1.

2.2. JSR-Net

The idea of the design of JSR-Net is to unroll Algorithm 1
and approximate some of the operators using neural networks.
In this way, we form a deep feed-forward network which is
the proposed JSR-Net. To be more precise, we use CNNs
to approximate the inverse operators A−1 and C−1, and the
thresholding operator T in (3) and (4). For simplicity, we
denote these CNNs as N (·; Θ). Then, we obtain the JSR-
Net as shown in Algorithm 2, where all the parameters of the
CNNs and α, γ, µ1, µ2 are trainable parameters.

Algorithm 1 JSR algorithm for (2)
1: Initialization: b01 = b02 = 0,
2: while stop criterion is not met do
3: update u:

uk+1 = A−1
[
αP>RΓf

k + B + µ1W
>
1 (dk1 − bk1)

]
dk+1
1 = Tλ1/µ1

(W1u
k+1 + bk1)

bk+1
1 = bk1 + (W1u

k+1 − dk+1
1 ) (3)

where A = P>(αRΓ+γRΓc)P+µ1 and B = γP>RΓcY
4: update f :

fk+1 = C−1
[
αRΓPuk+1 +D + µ2W

>
2 (dk2 − bk2)

]
dk+1
2 = Tλ2/µ2

(W2f
k+1 + bk2)

bk+1
2 = bk2 + (W2f

k+1 − dk+1
2 ) (4)

where C = αRΓ +RΓc + µ2 and D = RΓcY .
5: end while
6: Output: u∗

We adopt the same CNN architecture (with different set
of learnable parameters that varies for each iteration k) to
approximate the matrix inversions in both of the uk- and
fk-subproblem. The thresholding operator that appears in
the dk1- and dk2-subproblem are approximated by a CNN with
the same architecture but different from that of the uk- and
fk-subproblem. To be more precise, the matrix inversion
in the uk-subproblem (same for the fk-subproblem) is ap-
proximated by a CNN with a 3 level DenseNet architecture
[18] followed by a LM-ResNet structure [19]. At each level
of DenseNet, the input is processed by the composition of
a Convolution(Conv) layer followed by PReLU activation
[3]. While for the thresholding operators of the dk1- and dk2-
subproblem, the CNN is composed of 3 convolution layers
that comprises consecutive operations “Conv → PReLU →
Conv ”. Note that, it is possible to approximate dk1 and dk2 by
choosing a single convolution layer with ReLU activation.

3. NETWORK TRAINING

3.1. Loss function

To prevent over-smoothing, we adopt a hybrid loss function
that blends SSIM loss, MSE and semantic loss to guide the
training process. Our structure-semantic-`2 (SS2) hybrid loss
function is defined as

LSS2 = θ1LSSIM + LMSE + θ3Lsem, (7)

where LSSIM =
∑

(1 − SSIM(urec,utruth)) is the error
summation of SSIM over mini batch with respect to the re-
constructed image urec and ground truth utruth. LMSE =
LS + θ2LR is the `2 loss in spatial domain and Radon do-
main defined by LS =

∑
‖urec − utruth‖2, and LR =
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Algorithm 2 JSR-Net
1: Initialization: b1, b2,u,f ,W1,W2,N (·)
2: for k=0:N do
3: update u:

uk+1 = Nu(
[
P>RΓf

k,B,W>
1 (dk1 − bk1)

]
; Θk

u)

dk+1
1 = Nd1(W1u

k+1 + bk1 ; Θk
d1)

bk+1
1 = bk1 + (W1u

k+1 − dk+1
1 ) (5)

where B = γP>RΓcY
4: update f :

fk+1 = Nf (
[
RΓPuk+1,D,W>

2 (dk2 − bk2)
]

; Θk
f )

dk+1
2 = Nd2(W2f

k+1 + bk2 ; Θk
d2)

bk+1
2 = bk2 + (W2f

k+1 − dk+1
2 ) (6)

where D = RΓcY
5: end for
6: Output: u∗

∑
‖RΓcP(urec − utruth)‖2, respectively. Lsem is the `2

norm of the difference of the level sets (i.e. image contents)
ofurec andutruth asLsem = ‖sem(urec)−sem(utruth)‖2.

In the training stage, the loss function (7) is minimized
by the stochastic gradient descent algorithm with adaptive
moment estimation(ADAM)[20]. The ADAM optimizer is
adopted with a cosine annealing learning rate, at training step
t, defined by η = 0.001

2 (1+cos(π t
tmax

)); the second raw mo-
ment parameter β = 0.99 and the gradient norm is clipped
by 1.0. The maximum training step tmax is set to 10000 for
all the experiments. The training is conducted on Tensorflow
1.3.0 with a Titan Xp GPU with memory 10.75G.

3.2. Training database

The real clinical data “the 2016 NIH-AAPM-Mayo Clinic
Low Dose CT Grand Challenge” [21] from Mayo Clinic is
used for the training and validation. The data set contains ab-
domen CT images from five patients. It contains 1684 slices
of images with 512×512 pixels. We randomly select 50 slices
for validation and the rest for training.

4. EXPERIMENTS

The simulated CT imaging system has 1024 detectors with
fan beam geometry. For the sparse view CT reconstruction,
90 available views uniformly distribute over 360◦. For the
limited angle CT reconstruction, 150 views are collected
which are measured by 1◦ per scanning step. The measured
projection data, denoted by Y , is contaminated by additive
white Gaussian noise with variance σ = 0.05 (for simplicity).
More general model with Poisson-Gaussian noise data [22]
will be considered in the future.

We compare the reconstruction results of JSR-Net to FBP,
PD-Net [10], JSR model(Algorithm 1). To have a fair com-
parison, we choose N = 5 in JSR-Net (Algorithm 2) so that
it has similar number of trainable parameters as PD-Net. The
parameters in Algorithm 1 are empirically tuned for optimal
performance. All the hyper-parameters in JSR-Net are fixed
for the simulations of both sparse view and limited angle.

The source code of the PD-Net is publicly available. We
only modify the forward imaging operator P by composing
it with the data restriction operator RΓc to obtain the final
imaging system. All the other hyper-parameters are set as
default. To demonstrate the advantage of the JSR-Net, we
also train the PD-Net using the SS2 hybrid loss function (7).

4.1. Sparse view CT image reconstruction

We evaluate the performance of the JSR-Net for sparse view
CT image reconstruction. Fig. 1 shows an example of the
ground truth and reconstructed images from FBP, PD-Net,
JSR model(Algorithm 1) and JSR-Net(Algorithm 2). The
gray scale window for FBP is set to [0, 0.5], and [0, 1] for
the rest. The error maps are shown in Fig. 1(h) and Fig. 1(i).

The reconstruction results in Fig. 1 shows that both the
JSR-Net and PD-Net outperform FBP and are able to bet-
ter preserve sharp features than the JSR model. The PD-Net
with the proposed SS2 hybrid loss function (7) has better per-
formance than using merely the `2 loss which was originally
adopted by [10]. The JSR-Net with the SS2 hybrid loss func-
tion has the best overall performance, and it performs better
than using only the `2 loss in term of suppressing streak ar-
tifacts. Note that, since the semantic term Lsem is not cru-
cial and empirically has little performance improvement for
sparse view problem, we set θ3 = 0 in this experiment. Error
maps (with gray scale window [-0.2, 0.2]) in Fig. 1(h) and (i)
show that JSR-Net can better reconstruct image details than
PD-Net.

4.2. Limited angle CT image reconstruction

We evaluate the performance of JSR-Net for limited angle CT
image reconstruction. Fig. 2 shows one of the example from
test set with the ground truth and the reconstructed images
from FBP, PD-Net [10], JSR model(Algorithm 1) and JSR-
Net(Algorithm 2).

The gray scale window is set same as before except that
the error map window is set to [-0.4,0.4]. Fig. 2 shows that
both the PD-Net and JSR-Net outperform FBP and the JSR
model, especially at the top region of the image. The use of
the SS2 hybrid loss can improve the results from PD-Net over
the `2 loss but only mildly. This is because the PD-Net does
not have a joint spatial Radon recovery mechanism. In con-
trast, the JSR-Net can be significantly benefit from the SS2
hybrid loss and it generates the best results over all compared
models. Streak artifacts are observable in Fig. 2 (c) and (f).

3659



Table 1. Incomplete data CT image reconstruction.

Tasks Models
Qual. Meas.

SSIM PSNR NRMSE MSE

Sparse view CT

FBP 0.6173 17.25 1.078 0.0189
PD-Net, `2 0.8709 28.54 0.1453 0.0014

PD-Net, SS2 0.8844 30.68 0.1134 0.0009
JSR model 0.8088 26.64 0.1866 0.0022
JSR-Net,`2 0.8271 27.68 0.1604 0.0017

JSR-Net,SS2 0.9081 31.59 0.1022 0.0007

Limited angle CT

FBP 0.4826 15.91 1.5143 0.0257
PD-Net, `2 0.8778 26.43 0.1852 0.0023

PD-Net, SS2 0.88 27.44 0.1648 0.0018
JSR model 0.8317 25.38 0.2174 0.0029
JSR-Net,`2 0.7337 23.72 0.253 0.0042

JSR-Net, SS2 0.9076 27.31 0.1674 0.0019

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Sparse view CT image reconstruction. (a)Ground
truth; (b)FBP; (c)PD-Net, `2; (d)PD-Net, SS2; (e)JSR model;
(f) JSR-Net, `2; (g)JSR-Net, SS2; (h)Error map of PD-Net,
SS2; (i)Error map of JSR-Net, SS2.

4.3. Quantitative comparison

To quantitatively compare the performance of FBP, PD-Net,
JSR model and JSR-Net, Table 1 reports four different quality
metrics of the reconstruction results: i.e. SSIM, PSNR, MSE
and NMSE. We observe that JSR-Net trained with SS2 loss
outperforms PD-Net for sparse view CT and has comparable
results with PD-Net for limited angle CT.

5. CONCLUSION AND FUTURE WORK

In this work, we propose a new CNN, named JSR-Net, by
unfolding the joint spatial-Radon domain image reconstruc-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Limited angle CT image reconstruction. (a)Ground
truth; (b)FBP; (c)PD-Net, `2; (d)PD-Net, SS2; (e)JSR model;
(f) JSR-Net, `2; (g)JSR-Net, SS2; (h)Error map of PD-Net;
SS2, (i)Error map of JSR-Net, SS2.

tion algorithm for incomplete data CT imaging. A hybrid
loss, containing MSE, SSIM and semantic segmentation, is
designed to train the proposed JSR-Net. Numerical results
show improved performance of JSR-Net with hybrid loss than
state-of-the-art approaches.

In the future, we will try to design more reliable loss func-
tion that is more effective in preserving details in the recon-
structed image. Furthermore, the network architecture design
and applications such as interior/exterior CT are also worth to
explore with the proposed JSR-Net.
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[10] Jonas Adler and Ozan Öktem, “Learned primal-dual re-
construction,” IEEE Trans. Med. Imaging, vol. 37, no.
6, pp. 1322–1332, 2018.
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