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ABSTRACT

Speaker embedding models that utilize neural networks to
map utterances to a space where distances reflect similarity
between speakers have driven recent progress in the speaker
recognition task. However, there is still a significant perfor-
mance gap between recognizing speakers in the training set
and unseen speakers. The latter case corresponds to the few-
shot learning task, where a trained model is evaluated on un-
seen classes. Here, we optimize a speaker embedding model
with prototypical network loss (PNL), a state-of-the-art ap-
proach for the few-shot image classification task. The result-
ing embedding model outperforms the state-of-the-art triplet
loss based models in both speaker verification and identifica-
tion tasks, for both seen and unseen speakers.

Index Terms— deep metric learning, triplet loss, se-
quence embedding, speaker recognition

1. INTRODUCTION

The development of embedding models to represent speech
features in high-dimensional space has enabled elegant solu-
tions to speaker recognition problems, including speaker ver-
ification (SV), and speaker identification (SI). Speaker verifi-
cation systems verify whether or not a given utterance comes
from some claimed speaker, while only having access to a
handful of enrolled utterances (i.e. training examples). In the
speaker identification task, a trained model is asked to classify
among K speakers given small amount of enrollment speech.
For both tasks, finding good representation of speech features
is essential to recognition of the speaker, especially with small
training sets: the variation in phrases needs to be normalized,
while variation across speakers must be preserved.

Traditional pipelines that combine i-vector and proba-
bilistic linear discriminant analysis (PLDA) separately train
the feature extractor and the final classifier [1]. However,
performance of i-vector systems drops for short speech ut-
terances [2]. More robust feature extractors have been pro-
posed, including replacing i-vectors with features extracted
from deep networks [3, 4]. Most recent efforts have relied
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Fig. 1: Comparison between the effect of prototypical net-
work loss (PNL) and triplet loss (TL) on the embedding.
Dashed lines represent distances encouraged to increase,
while solid lines represent distances being decreased. left:
For PNL, prototypes for different speakers, denoted by black
nodes are computed as the mean of the support set (shaded)
during training. right: For TL, a triplet consists of an anchor,
positive, and negative samples, forming the (anchor, positive)
and (anchor,negative) pairs. Depending on the sampling strat-
egy not all triplets may be considered.

on optimizing an end-to-end deep model with the triplet loss
(TL) [5, 6, 7, 8] and the generalized end-to-end (GE2E)
loss [9] to build the speaker embeddings .

In this paper we propose the use of prototypical network
loss (PNL) to optimize an end-to-end speaker embedding net-
work. PNL was introduced for the few-shot image classifica-
tion task [10] and is the state-of-the-art approach on several
few-shot learning benchmarks. However, to the best of our
knowledge, PNL has not been applied to speaker embedding
or related problems. Here we show that for SV and SI tasks, a
model trained with PNL outperforms an embedding network
of the same architecture optimized with TL. We discuss why
PNL is a better formulation for learning an embedding model
and provide empirical observations as to why it might be eas-
ier to use in practice.

2. RELATED WORK

Speaker embedding networks: In traditional i-vector based
methods for speaker embedding, a universal background
model is first built. Then, a PLDA model is trained to mea-
sure the similarity of i-vectors. Replacing traditional i-vectors
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with speaker embedding models based on deep neural net-
works has lead to improvement in SV [4, 3]. Nonetheless, a
PLDA classifier is still needed to compare the similarity of
embeddings. More recently, end-to-end training of an em-
bedding network that makes decision by comparing distance
in the embedding to a cross-validated threshold outperformed
traditional methods. For detailed comparison between em-
bedding networks and i-vector based methods, we refer the
reader to [6, 4, 3]. Building on top of these studies, our work
focuses on the comparison between two different approaches
for deep metric learning (TL [5, 6, 7, 8] and PNL [10]) for
end-to-end speaker embedding models.

Deep metric learning: End-to-end speaker embedding
models can be seen as a form of deep metric learning, which
has been widely studied in the machine learning literature.
Early examples of metric learning with neural networks in-
clude signature [11] and face verification [12]. Both compare
pairs of examples with standard similarity functions (e.g. co-
sine or Euclidean distance) at the final embedding layer of a
siamese architecture. More complex loss functions involving
triplets {anchor, positive, negative} were later proposed [13],
and shown to perform well on face verification [14].

Few-shot learning: Motivated by the fact that humans
can learn new concepts from only a handful of examples,
researchers have proposed the challenging task of “few-shot
learning” [15, 16]. The test-time task is to classify examples
amongK new classes (i.e. unseen during training) while only
being given a handful of labeled examples from these new
classes. The same consideration arises naturally for speaker
recognition tasks, as speakers encountered during test time
may be different. It is essential to build profiles for previ-
ously unseen speakers with limited data. In contrast to previ-
ous applications of PNL [10], we use it in conjunction with
a recurrent neural network for sequential data (i.e. speech)
rather than a convolutional network for images.

3. OPTIMIZATION SCHEMES & MODEL

We now explain the standard triplet loss scheme and compare
it to PNL [10]. We then describe the model we optimize using
the two schemes for speaker embedding.

3.1. Triplet loss

For triplet-based models, we denote by S′ = {x1, · · · ,xN ′}
the examples in one mini-batch of size N ′, where xi is a
sequence of speech features. These models sample triplets,
which consist of an anchor xa, a positive sample xp with the
same speaker label, and a negative sample xn with a different
speaker label. For each triplet τ = (xa,xp,xn), the triplet
loss is formulated as:

L(τ) = max(0, da,p − da,n + α) (1)

where da,b = d(f(xa), f(xb)), d and f are the distance func-
tion (e.g. cosine or squared Euclidean distance) and speaker

embedding model, respectively, and α > 0 is a margin. Min-
imizing L(xa,xp,xn) learns representations so that the sim-
ilar pair (xa,xp) has smaller distance than the dissimilar pair
(xa,xn), adjusted by the margin. It is worth noting that the
triplet loss does not minimize distances between similar pairs
(i.e., when da,p−da,n+α < 0); it only tries to preserve some
order between distances. Finally, the loss for a mini-batch is
JTL =

∑
τ∈T L(τ) where T is the set all of possible triplets

in the mini-batch. In the context of very large datasets, creat-
ing all the possible triplets (referred as the naı̈ve strategy) is
computationally expensive; different triplet sampling strate-
gies have been proposed to ensure fast convergence while
avoiding degenerate solutions. For instance, the semi-hard
mining strategy [14] samples only one hard negative pair for
each positive pair. A triplet is “hard” if da,p − da,n + α > 0.

3.2. Prototypical Networks Loss

Prototypical Networks [10] train a neural network episodi-
cally; each episode is composed of one mini-batch contain-
ing K categories (here, speakers). The mini-batch contains
a support set called S and a query set called Q. In our case,
the support set S = {(xi, yi)}Ni=1 represents each example as
a sequence of speech feature vectors xi with corresponding
speaker label yi ∈ {1, · · · ,K}. We denote Sk ⊆ S as the set
of examples in S of speaker k.

The prototype (or centroid) of each class ck ∈ RM is
calculated as the mean of embeddings in the support set:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

f(xi) (2)

where f is the speaker embedding model which maps se-
quences of speech features into the M -dimensional embed-
ding space (see details in Section 3.3).

During training, each query example {(xj , yj)} ∈ Q is
classified against K speakers based on a softmax over dis-
tances to each speaker prototypes:

p(y = yj |xj) =
exp

(
−d(f(xj), cyj )

)
Σk′ exp (−d(f(xj), ck′)

(3)

where d is the distance function. The loss function for each
mini-batch is JPNL =

∑
{(xj ,yj)}∈Q− log p(y = yj |xj)

3.3. Speech sequence embedding model

In terms of network architecture, we use the same speech
sequence embedding model as TristouNet [7]. We use the
same model architecture when optimizing with each of the
two losses above. As shown in Fig. 2, the sequence of
Mel-frequency cepstral coefficients (MFCC) features are col-
lected. They are then fed into bidirectional LSTM [17].
The outputs from the forward and backward LSTMs are first
average-pooled over time, concatenated, then processed by a
fully connected layer and a normalization layer.
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Fig. 2: Speech sequence embedding model

4. EXPERIMENT

In this section, we introduce the experiments conducted for
evaluation and comparison of different models.

4.1. Datasets and implementation details

We use the VCTK corpus [18] and a subset of VoxCeleb2
dataset [8]. VCTK corpus contains clearly read speech,
while VoxCeleb2 has more background noise and overlap-
ping speech. Speech data of the first 90 speakers in VCTK
corpus was divided into training, validation and test sets. Data
of the remaining 18 speakers was used as an “unseen” set to
evaluate the generalizability of the method. For VoxCeleb2,
we selected a subset containing 101 speakers (we refer to this
subset as VoxCeleb2 dataset for conciseness) and use data of
71 speakers for training and validation, while the other 30
speakers are used as the “unseen” set.

We use the default implementation of TristouNet for fea-
ture extraction and speech sequence embedding models. In
the following, we refer to the models by the loss used dur-
ing optimization (i.e. PNL vs. TL) as the architecture of the
embedding network is fixed.

Feature extraction We extracted 19-dimensional MFCCs,
their first and second derivatives, along with the first and sec-
ond derivatives of energy in a 25ms window every 10ms
using the pyannote multimedia processing toolkit1 and Yaafe
toolkit [19]. This results in 59-dimensional acoustic features.
We use 2-second segments for both PNL and TL models to
ensure comparability of results and to test performance on
shorter utterances.

Training We use PyTorch [20] for implementation of both
losses2. The output dimension is 16, and the tanh activation

1http://pyannote.github.io/
2Our implementation of PNL is based on that of the original authors:

https://github.com/jakesnell/prototypical-networks [10]

Fig. 3: “same/different” experiments on test and unseen sets.

function is used for the fully connected layer. Squared Eu-
clidean distance is used as the distance function. The mar-
gin α used in our implementation of TL is 0.2 following [7].
For both models, the Adam optimizer [21] is used with 10−3

learning rate. Both models are trained for 100 epochs.
For each mini-batch, we randomly choose 15 speakers

without replacement on VCTK (10 speakers on VoxCeleb2).
We enforce equal mini-batch size between the two formula-
tions (i.e., |S| + |Q| = N ′). TL models are trained with Eu-
clidian distance or cosine distance using naı̈ve or semi-hard
strategy. PNL models are trained with different size of sup-
port and query sets. To avoid confusion in the following, “TL
(s, d)” denotes sampling strategy s with distance metric d,
and “PNL (x y, d)” denotes PNL using x-shot with query set
of size y training episodes.

4.2. “Same/Different” experiments

As with TristouNet [7], we first conduct “same/different” ex-
periments on the VCTK corpus. The same number of posi-
tive (same speaker) and negative (different speakers) pairs are
randomly selected. For each pair of segments, we calculate
the distance between their embeddings and compare it with a
threshold to predict whether they are from the same or differ-
ent speakers.

We report the receiver operating characteristic (ROC)
curve for each model, shown in Fig. 3. All models perform
comparably well on seen data set. However, on the unseen
data PNL model outperforms TL models.

4.3. Speaker Identification

To evaluate SI performance, we simulate each test task with a
batch of K speakers, each with S enrollment samples, and Q
query samples. Classification of a query is done by finding the
closest prototype based on some metric d. Results are shown
in Table 1, from which one can observe that the 3-shot PNL-
based model outperforms the TL (Semi, Euc) model on all
tasks, especially on the more challenging 18-way SI task (6%
and 19% relative improvement on test and unseen data set,
respectively). Interestingly, the one-shot PNL based model
performs better than triplet loss based model with naı̈ve sam-
pling strategy while it “sees” many fewer positive and nega-
tive pairs for each batch. It also performs nearly as well as TL
that uses the more complicated semi-hard sampling strategy.
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Table 1: SI accuracy on test and unseen sets of VCTK. Under
the Model column are the training configurations. The top
row ‘S:NS , Q:NQ, K-way’ denotes the task configurations.

Model
S: 5, Q: 5, 6-way S: 10, Q: 10, 18-way

Test Unseen Test Unseen
TL (Naive, Euc) 91.96% 77.80% 81.25% 56.37%
TL (Naive, Cos) 92.37% 77.69% 83.51% 58.51%
TL (Semi, Euc) 93.33% 79.69% 85.38% 58.49%
TL (Semi, Cos) 92.13% 73.94% 83.99% 52.97%
PNL (1 5, Euc) 93.24% 77.90% 83.71% 56.52%
PNL (3 5, Euc) 95.63% 84.81% 90.53% 69.64%
PNL (5 5, Euc) 95.47% 83.69% 89.85% 68.55%

PNL (10 10, Euc) 94.38% 85.00% 88.43% 66.63%

Table 2: SI accuracy on VoxCeleb2.

Model
15-way

S: 10, Q: - S: 30, Q: -
Test Unseen Test Unseen

TL (Semi, Cos) 74.74% 53.92% 75.18% 59.61%
TL (Semi, Euc) 71.78% 51.74% 72.02% 56.79%
PNL (5 5, Euc) 78.38% 59.44% 79.23% 66.63%

Table 3: EER of SV on both data sets. “2s” (2 seconds) refers
the duration of speech we used for enrollment.

(a) EER on VCTK

Model
Test Unseen

60s 60s 10s
TL (Semi, Cos) 5.43(±0.16) 13.87(±0.37) 16.19(±0.86)
TL (Semi, Euc) 5.05(±0.09) 12.26(±0.69) 13.44(±0.91)
PNL (5 5, Euc) 4.08(±0.13) 10.77(±0.58) 12.00(±0.76)

(b) EER on VoxCeleb2

Model
Test Unseen

60s 60s 10s
TL (Semi, Cos) 9.23(±0.13) 14.62(±0.35) 16.93(±0.45)
TL (Semi, Euc) 9.90(±0.11) 15.92(±0.32) 17.61(±0.51)
PNL (5 5, Euc) 8.29(±0.12) 13.68(±0.26) 15.67(±0.56)

4.4. Speaker verification

To evaluate SV performance, we randomly select some
speech segments for enrollment. Then, 200 (resp. 100)
segments of each speaker are selected as positive samples on
VoxCeleb2 (resp. VCTK). Equal number of negative sam-
ples are selected from different speakers. During enrollment
phase, speaker prototypes are computed from the enrollment
set. For verification, the decision is made by comparing the
distance between the embedding of the query segment and the
speaker prototype to a threshold. Performance is evaluated
by equal error rate (EER). Results are shown in Table 3.

Results obtained by repeating the experiments 10 times
(i.e. mean and standard deviation) on VCTK and VoxCeleb2
are shown in Table 3a and Table 3b, respectively. EER of
PNL model is significantly lower than that of TL models (p�

0.001 using t-test) across all tasks. As expected, both models
perform reasonably well on test set of VCTK, while a little
worse on test set of VoxCeleb2. For unseen set, EERs of all
models decrease for longer duration of speech data for enroll-
ment. Although TL (Semi, Cos) outperforms TL (Semi, Euc)
on more noisy data set, PNL still achieves the lowest EER.

4.5. Analysis

The fact that generalization improves as the number of data
points per category increases for the PNL model may be ex-
plained by the fact that PNL is a specific (supervised) formu-
lation of clustering with Bregman divergences [22]. The pro-
totype of each category approximates the point that minimizes
the loss in Bregman information [22] for that category. Breg-
man information is related to Shannon’s rate distortion theory,
it corresponds to the optimal distortion-rate to encode a cat-
egory when the distortion is measured by d (i.e., the squared
Euclidean distance). The point that minimizes the loss in
Bregman information [22] for the category is the mean vector
of all the examples that belongs to the category. Therefore,
the larger the number of ‘shots’, the better the approximation
of the mean vector of the examples in the category. However,
a larger number of shots does not necessarily lead to better
performance as discussed in [10]. Statistical guarantees of (a
generalization of) PNL are studied in [23]. In practice, PNL
is quite robust to the choice of number of shots. We find that
anywhere between 3 to 10 shots work well.

The reason why SI accuracy of TL models drops dramati-
cally for experiments with more “ways” might be due to lim-
itation of TL, which has been extensively studied in the lit-
erature in different contexts [24, 25]. One main limitation is
that TL does not necessarily group each category into a single
cluster even when the global optimum is reached [24].

In our experience, PNL is practically easier to use than
TL. PNL is not dependent on a triplet sampling strategy, that
can impact performance, and do not require the margin pa-
rameter α. PNL models are also∼3x faster to train (wallclock
time) than TL models with same mini-batch size because TL
requires more pairwise comparisons for batches of same size.

5. CONCLUSION

We have proposed a prototypical network loss-based speaker
embedding model, and compared it with the popular triplet
loss-based models. With identical speech sequence embed-
ding architectures, PNL outperforms the triplet loss when
speakers are seen during training, and by an even larger
margin on held-out, unseen speakers for both speaker iden-
tification and speaker verification tasks. We also illustrate
some of the practical advantages of PNL models over TL. In
the future, we would like to explore better architectures of
speech sequence embedding models and integrate the few-
shot learning based speaker embedding model into a speaker
diarization pipeline.
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