
NETWORK ADAPTATION STRATEGIES FOR LEARNING NEW CLASSES WITHOUT
FORGETTING THE ORIGINAL ONES

Hagai Taitelbaum1 Gal Chechik2 Jacob Goldberger1

1 Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
2 The Gonda Brain Research Center, Bar-Ilan University and NVIDIA Research

ABSTRACT
We address the problem of adding new classes to an exist-
ing classifier without hurting the original classes, when no
access is allowed to any sample from the original classes.
This problem arises frequently since models are often shared
without their training data, due to privacy and data ownership
concerns. We propose an easy-to-use approach that modifies
the original classifier by retraining a suitable subset of layers
using a linearly-tuned, knowledge-distillation regularization.
The set of layers that is tuned depends on the number of new
added classes and the number of original classes.

We evaluate the proposed method on two standard datasets,
first in a language-identification task, then in an image clas-
sification setup. In both cases, the method achieves classi-
fication accuracy that is almost as good as that obtained by
a system trained using unrestricted samples from both the
original and new classes.

Index Terms— Catastrophic forgetting, learning privacy,
knowledge distillation

1. INTRODUCTION

Many classification learning procedures require the addi-
tion of new classes to an existing classification system while
maintaining the system’s performance on the original classes.
When the original training data are available, the classifier
can simply be retrained from scratch with samples from both
the new and the original classes. However, in a wide variety
of machine learning problems, training data from the origi-
nal classes cannot be used. This happens for example when
the training dataset contains sensitive information that is not
provided, or due to concerns over data ownership and sharing
(e.g., GDPR). In these cases, it is impossible to simply retrain
a model without compromising privacy [1].

Here, we address the problem of extending a classifier to
new classes when the training data used to train the original
classifier are not available. The only available data are from
the new classes to be added to the system. We also assume
that we have access to the system parameters, which were
pre-trained for the original classes.

One naive approach would be to “fine-tune” the classi-
fier with samples from the new classes. Sadly, it is well-
known that this approach induces catastrophic forgetting

(CF), namely, the tendency of an artificial neural network
to forget previously learned information upon learning new
information [2, 3]. CF has two related aspects: it involves for-
getting the representation that was learned and also involves
a performance deterioration for old tasks. The current setup
is related to similar problem in continual learning, where the
aim is to incrementally train a single network to learn multiple
tasks. In this setup, each task is evaluated solely on the data
from its own dataset (see e.g. [4, 5]), and it assumes that an
oracle classifier is available, which determines the appropri-
ate task for the given instance. In our case, the classification
system needs to classify an object without information on
whether it belongs to the original task or to the new class set.

Most algorithms designed to avoid CF are motivated by
computational and memory constraints, rather than by privacy
concerns. As a result, these algorithms operate under the as-
sumption that samples from the original classes are available.
Under these assumptions, one natural approach stores a sub-
set of samples from the original classes and uses them during
retraining [6]. Other approaches train generative models us-
ing the samples from the first phase, and use them to gener-
ate samples in the retraining phase [7, 8, 9]. [10] described
a combined approach that both stores samples from the origi-
nal classes and trains a generative model based on the original
classes. All these approaches assume they can access the data
used to train the original classification system, and thus do not
apply to the problem addressed in this paper. More recently,
[11] described an approach addressing the problem discussed
here. Unfortunately, it leads to inferior performance because
it has no representation learning during the retraining phase.

Here, we propose a method for adding new classes to an
existing classifier, while addressing CF.As our main novel
contribution, we show that a good representation can be
relearned in the retraining phase, by training a limited but
suitable subset of layers of the classifier using linearly tuned
knowledge distillation regularization. The decisions as to
which layers to retrain, and how to set the regularization
weight depend on the ratio between the number of original
classes and the number of classes in the extended class-set.
Evaluations of the proposed method on standard datasets
shows significant improvement compared to previously sug-
gested methods.

3637978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

2. NETWORK ADAPTATION

The learning setup
We consider a multi-class problem where a classifier was
trained to map an input feature vector x to one class in a set
of k classes A = {1, ..., k}. We are further given labeled
training data (x1, y1), . . . , (xn, yn) from m new classes from
the setB = {k+1, ..., k+m}. We want to create an extended
classifier that can correctly map a new test sample to a class in
A ∪B. We further assume that the original model parameters
are available, but there is no access to the training data used to
train the original classifier. Our goal is to train a classifier for
the set A ∪B, using the parameters of the original classifier
and the new training data labeled by classes from B.

Deep learning classifiers consist of two major compo-
nents: a non-linear transformation h(x), followed by a linear
soft-max layer parametrized by a weight vector w. Together,
they yield a soft classification over the class set A:

p(y = i|x) = exp(wih(x))∑
j∈A exp(wjh(x))

, i ∈ A. (1)

One can extend the classifier to new classes by keeping the
nonlinear transformation, and extending the softmax layer to
the m new classes. The output of the extended classifier is

p(y = i|x) = exp(wih(x))∑
j∈A∪B exp(wjh(x))

, i ∈ A ∪B. (2)

The parameters of the extended classifier can be learned to
maximize the likelihood:

L̃ =

n∑
t=1

log p(yt|xt). (3)

As discussed above, if (3) is maximized by only using sam-
ples fromB, the classifier exhibits CF of the original class-set
A [2, 3]. CF in the sense of deterioration in old tasks perfor-
mance, occurs even if all the parameters of the original clas-
sifier are kept “frozen”, and maximization only tunes the new
parameters wk+1, ...,wk+m [11].

Addressing catastrophic forgetting with regularization
One common approach to alleviating CF is to modify the ob-
jective by adding a regularization term that encourages acti-
vation of output neurons of the original classes. Following [4]
and [6], we can use knowledge distillation [12] as a regular-
ization term, yielding the modified objective:
L = (1− ε)

n∑
t=1

log p(yt|xt) + ε

n∑
t=1

∑
i∈A

qti log p(y = i|xt),

(4)
where the hyperparameter ε controls the regularization term
and qti is the classification results of applying the original
classifier to the new data, as in Eq. (1).

Unfortunately, even if we use a regularized objective
function, it is not clear which layers of the original classifier
should be retrained and which parameters should be kept un-
changed, to maximize the test-set performance over the entire
class-set.

Our approach
Building on the work on regularized objectives, we suggest
retraining several layers of the network. To decide which
layers should be retrained, we analyze several cases and two
benchmark datasets. We show empirically below that select-
ing which layers to retrain depends on multiple factors includ-
ing the input features, the classifier architecture and the ratio
of the number of original to the number of new classes.

For a better intuition into this problem, it is useful to con-
sider the two extreme cases: only training the new parame-
ters as in [11] (ACWOD), and retraining all the weights of the
classifier (all-weights).

Consider first the extreme option where only the new pa-
rameters wk+1, ...,wk+m are trained and all the parameters of
the original classifier are kept intact. This strategy suffers
from two main problems: First, the representation x → h(x)
was learned for classification data labeled by classes from A
and is kept fixed in the retraining phase. As a result, it gener-
alizes poorly to classes from B. The second drawback is that
the distillation loss in this case is degenerated. It can be easily
verified that for every i ∈ A and j ∈ B the derivative of the
first objective term in Eq. (4) equals ∂

∂wj
log p(yt = i|xt) =

−h(xt)p(yt = j|xt), and the derivative of the regularization
term in Eq. (4) is:

∂

∂wj

∑
i∈A

qti log p(yt = i|xt) = −h(xt)p(yt=j|xt)
∑
i∈A

qti

= −h(xt)p(yt=j|xt).

The derivative of the loss therefore becomes:

∂L

∂wj
=

∑
t

((1− ε)1{yt=j} − p(yt = j|xt))h(xt).

Note, that the derivative does not depend on the distribution
of qti. Hence, no knowledge is actually distilled from the
original classifier by the regularization term.

Lets us now turn to the second extreme case of retraining
all the classifier parameters, which suffers from other limita-
tions. Specifically, when only a small number of new classes
is added during the retraining phase, tuning the classifier pa-
rameters is based on a small subset of the entire dataset , thus
hurting the overall performance. This effect occurs even if the
weight of the regularization term is set in an optimal way.

To avoid the drawbacks of these two extreme cases, we
take an intermediate approach, and train both the last layer
and several layers before it. If tuned correctly, this approach
gains from both worlds: on one hand, knowledge distillation
about the original classes is effective; on the other, the repre-
sentation h is re-learned to represent well the new classes.

How should we decide how many layers to retrain? To
shed light on this question, consider the number of new
classes compared to the number of original classes. When
the fraction of original classes is small, the learned represen-
tation tends to be narrowly tuned to these classes, since they

3638

do not sample well the space of classes. Intuitively, this can
be viewed as overfitting to classes in the sense of transfer
learning. In this case, small weight should be given to the
knowledge distillation component (small ε) and more layers
of the model should be retrained. This allows the classifier to
re-learns its representation based on the new classes, which
constitute most of the data.

When the fraction of original classes is large, and only few
new classes are added, the learned representation is likely to
reflect well the distribution over many classes. As a result,
the weight ε should be set high, and only few layers should
be retrained to keep the knowledge from the original classes,
which now form most of the data.

As in [11], we set ε to be the linear function:

ε = c× |A|
|A|+ |B|

. (5)

In the experiment section, we show that Eq. (5) indeed ap-
proximates well the optimal value. The slope c depends on
the task and on the classifier layers we want to retrain.

3. EXPERIMENTS

In this section we demonstrate the benefits of using the pro-
posed learning method on two standard classification tasks:
language identification and image classification.

(1) The NIST 2015 language recognition challenge [13]
has labeled data from 50 target languages, with 300 speech
segments per language. The speech segments were derived
from conversational telephone and narrow-band broadcast
speech data. Each speech segment is represented by an i-
vector of 400 components [14]. The segments used to create
the i-vectors had their duration sampled from a log-normal
distribution with a mean of approximately 35s. For each
language we used 255 speech segments for training and the
remaining 45 segments for performance evaluation.

As a classification network, we used a Deep Neural Net-
works (DNN) with two fully-connected hidden layers with
200 and 100 neurons, and a soft-max output layer. The ac-
tivation function was set to be ReLU and the optimization
procedure used was mini-batch SGD with a constant learning
rate of 0.01 for 80 epochs in each phase. We also used L2

regularization to prevent overfitting. The temperature of the
knowledge distillation loss was set to 1. The regularization
parameter was selected using the same method as in [11].

(2) The CIFAR-100 dataset [15] consists of 32 × 32
color images from 100 classes. There are 500 training im-
ages and 100 testing images per class for a total of 60000 im-
ages. For experiments with CIFAR-100, we used RseNet-32
[16] based on PyTorch implementation. For the optimization
process we used mini-batch SGD for 70 epochs. The initial
learning rate was 0.1 and was divided by 10 after 49 and 63
epochs (7/10 and 9/10 of all epochs). We used L2 regulariza-
tion with a weight decay of 0.0005. The temperature of the
knowledge distillation loss was set to 2, and we also used a
Nesterov momentum [17] of 0.9.

In the experiments we first trained a DNN classifier for
a subset A. Then, we used examples from the remaining
classes (subset B) to extend this model to the unified class-
set |A ∪B|. We set ε as described in Eq. (5). To evaluate
performance, we calculated the prediction accuracy on the en-
tire evaluation set including classes from both subsets A and
B. We computed the performance results as a function of the
proportion of A classes; namely, the fraction |A|/(|A|+ |B|).

Compared methods
As explained in Section 2, choosing the appropriate subset of
layers to retrain depends on the number of original classes. To
demonstrate our approach, we tested the networks using two
retraining subsets. First, we retrained all parameters of the
original classifier (all-weights). Second, we tuned a subset of
high-level layers. For the language identification task, we re-
trained the softmax layer and one hidden layer (one-hiddden-
layer). For the image classification, task we retrained one
residual block (residual-block) and the softmax layer.

We compared the above two variants of our approach
against three baselines:
(1) Original model. This method preserves its accuracy on
A classes, but always errs when classifying samples from B.
(2) ACWOD The method described in [11]. This method is
based on a transfer learning approach where the weights of
the original model are frozen, and only the weights that cor-
respond to the new labels are learned.
(3) Train with all data. An upper-bound baseline where
training has access to all the training data, while other models
are limited to samples from B classes alone. The network is
trained “from scratch” in a single training phase.

Fig. 1: NIST-2015 test-set accuracy as a function of the per-
centage of original classes.

Classification Results
Fig. 1 depicts the accuracy on the language identification task
as a function of the fraction of the original classes in the over-
all class set. Here, the more layers retrained, the higher the

3639

accuracy on the entire class-set. The all weights model out-
performed both the original model and ACWOD. These two
methods freeze all their weights, so there is no representation
learning when adding the classes from B. This is especially
noticeable when the original class set is small. Performance
reached close to the ideal upper bound.

Fig. 2 depicts the CIFAR-100 performance as a function
of the size of the original class-set. Retraining the network
led to better performance than either the original model or
ACWOD, when |A| is small. However, as the fraction of A
classes increases, the performance of all-weights decreases
slightly and then increases slightly. In addition, residual-
block consistently performed better than ACWOD and im-
proved monotonically as a function of the number of original
classes |A|.

Fig. 2: CIFAR-100 test set accuracy as a function of the per-
centage of original classes.

Fig. 3: The optimal weight of regularization, ε, as a function
of the fraction of original classes for CIFAR-100.

Figures 1,2 show that the accuracy of the all-weight
method, behaves differently as a function of the fraction of
original classes, compared to the other methods. Specifically,
in NIST-2015 (Fig. 1) the accuracy slightly improves as the

fraction of original classes increases, and remains superior to
the other methods. However, in CIFAR-100 (Fig. 2) the ac-
curacy fluctuates around the same level, and becomes inferior
as the other methods improve for fractions larger than 60%.

One possible explanation is that the samples in NIST-2015
are already represented using a well-tuned and high-level fea-
tures of sound, namely i-vectors. This representation is fixed,
not tuned by our approach, and as a result, even the all-weight
method, does not modify that representation. It can be viewed
as if there are low layers that implement a non-linear feature-
extraction procedure, that is kept fixed. In contrast, CIFAR-
100 is composed of raw images, and the entire representation
is learned by our network. In this case, under the all-weight
method the whole model is updated, and may hurt the low-
level representation for the original classes.

Distillation weight analysis

The three network-retraining methods, all-weight, residual-
block/one-hidden and ACWOD, may differ in two aspects:
First, the number of layers that are tuned during the second
training phase; Second, the value of the ε parameter that
weighs the distillation loss in the objective function (Eq. 4).
We further studied the relation between these two parameters.

For each value of |A|, we empirically found the value of
ε that maximizes the accuracy of the extended classifier, as in
[11]. For NIST2015, the optimal epsilon values were simi-
lar for all methods. Fig. 3 depicts the optimal ε values for
the CIFAR-100 dataset as a function of the fraction of A, for
the three studied methods (solid curves). It shows that the
optimal ε increases monotonically as a function of |A|, and
roughly follows a linear growth. We therefore approximate
the empirical optimal ε values with a linear function of |A| as
suggested in Section 2 and discussed in [11]. The linear fit is
plot in Figure 3 as dashed lines for each of the three methods.

When comparing the slopes of the three dashes curves in
Fig. 3, we observe that methods that update more layers have
a steeper slope. For instance, all-weights tunes all layers of
the network, and reaches the highest ε values. This suggests
that methods that are restricted to tune only small part of the
network (like ACWOD, and to a lesser extent residual-block)
counter-act this constraint, by reducing the weight of the dis-
tillation loss. This allows them to adapt more strongly those
layers of the network that are not fixed.

Conclusions

We proposed a method to learn new classes incrementally
when the data used to train the original classifier are not avail-
able. We showed that the relative proportion of original and
new classes dictates the best network adaptation strategy and
controls the number of network layers that should be trained
and not remained fixed.

3640

4. REFERENCES

[1] M. Abadi, U. Erlingsson, I. Goodfellow, H. McMahan,
I. Mironov, N. Papernot, K. Talwar, and L. Zhang, “On
the protection of private information in machine learn-
ing systems: Two recent approaches,” in IEEE Com-
puter Security Foundations Symposium, 2017.

[2] M. McCloskey and N. Cohen, “Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem,” The Psychology of Learning and Motivation,
vol. 24, pp. 109–164, 1989.

[3] R. M. French, “Catastrophic forgetting in connectionist
networks,” Trends in Cognitive Sciences, vol. 3, no. 4,
pp. 128–135, 1999.

[4] Z. Li and D. Hoiem, “Learning without forgetting,” in
European Conference on Computer Vision, 2016.

[5] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness,
G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
malho, A. Grabska-Barwinska, et al., “Overcoming
catastrophic forgetting in neural networks,” Proceedings
of the National Academy of Sciences, pp. 3521–3526,
2017.

[6] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lam-
pert, “iCaRL: Incremental Classifier and Representation
Learning,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2017.

[7] C. Atkinson, B. McCane, L. Szymanski, and A. Robins,
“Pseudo-recursal: Solving the catastrophic forgetting
problem in deep neural networks,” arXiv preprint
arXiv:1802.03875, 2018.

[8] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo,
Z. Zhang, and Y. Fu, “Incremental classifier learning
with generative adversarial networks,” arXiv preprint
arXiv:1802.00853, 2018.

[9] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learn-
ing with deep generative replay,” in Advances in Neural
Information Processing Systems, 2017, pp. 2990–2999.

[10] C. He, R. Wang, S. Shan, and X. Chen, “Exemplar-
supported generative reproduction for class incremental
learning,” in 29th British Machine Vision Conference,
2018, pp. 3–6.

[11] H. Taitelbaum, E. Ben-Reuven, and J. Goldberger,
“Adding new classes without access to the original train-
ing data with applications to language identification,” in
Proc. Interspeech, 2018, pp. 1808–1812.

[12] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
knowledge in a neural network,” in NIPS Workshop on
Deep Learning, 2014.

[13] “NIST language recognition i-vector machine learning
challenge,” https://ivectorchallenge.nist.gov/, 2015.

[14] N. Dehak, P. A. Torres-Carrasquillo, D. Reynold, and
R. Dehak, “Language recognition via Ivectors and di-
mensionality reduction,” in Interspeech, 2011.

[15] A. Krizhevsky and G. Hinton, “Learning multiple lay-
ers of features from tiny images,” Tech. Rep., Citeseer,
2009.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in Proceedings of
the IEEE conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[17] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On
the importance of initialization and momentum in deep
learning,” in Int. Conference on Machine Learning,
2013, pp. 1139–1147.

3641

		2019-03-18T11:17:27-0500
	Preflight Ticket Signature

