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ABSTRACT
A fundamental problem when aggregating Markov chains is the

specification of the number of state groups. Too few state groups may fail
to sufficiently capture the pertinent dynamics of the original, high-order
Markov chain. Too many state groups may lead to a non-parsimonious,
reduced-order Markov chain whose complexity rivals that of the original.
In this paper, we show that an augmented value-of-information-based
approach to aggregating Markov chains facilitates the determination of
the number of state groups. The optimal state-group count coincides with
the case where the complexity of the reduced-order chain is balanced
against the mutual dependence between the original- and reduced-order
chain dynamics.

Index Terms—Aggregation, model reduction, Markov chains, infor-
mation theory

1. INTRODUCTION
Markov models have been widely adopted in a variety of disciplines.

Part of their appeal is that the application and simulation of such models
is rather efficient, provided that the corresponding state-space has a small
to moderate size. Dealing with large state spaces is often troublesome,
in comparison, as it may not be possible to adequately and efficiently
simulate the underlying models [1–5].

A means of rendering the simulation of large-scale models tractable
is crucial for many applications. One way to do this is by reducing
the overall size of the Markov-chain state space via aggregation [6].
Aggregation typically entails either defining and utilizing a function to
partition nodes in the probability transition graph associated with the
large-scale chain. Groups of nodes, which are related by the their inter-
state transition probabilities and have strong interactions, are combined
and treated as a single aggregated node in a new graph. This results in a
lower-order chain with a reduced state space. A stochastic matrix for
the lower-order chain is then specified, which describes the transitions
from one super-state to another. This stochastic matrix should roughly
mimic the dynamics of the original chain despite the potential loss in
information [7–9].

There are a variety of methods for aggregating Markov chains. Some
of the earliest work exploited the strong-weak interaction structure of
nearly completely decomposable Markov chains to obtain reduced-order
approximations [10–13]. Both uncontrolled [14, 15] and controlled
Markov chains [16, 17] have been extensively studied in the literature.

In this paper, we consider an approach for aggregating nearly-
completely-decomposable Markov chains, which is composed of two
information-theoretic processes [18]. The first process entails quantifying
the dissimilarity of nodes in the original and reduced-order probability
transition graphs, despite the difference in state space sizes. The second
process involves iteratively partitioning similar nodes without explicit
knowledge of the number of groups. For this second process, we con-
sider the use of an information-theoretic criterion known as the value
of information [19, 20] to efficiently partition the probability transition
graph. The value of information is a constrained, modified-free-energy-
difference criterion that describes the maximum benefit associated with a
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given quantity of information in order to minimize the average distortion
[21–23]. It is an optimal, non-linear conversion between information,
usually in the Shannon sense [24], and either costs or utilities, in the
von-Neumann-Morgenstern sense [25].

Optimizing the value of information in a grouped-coordinate-descent
manner yields a single free parameter that represents the effect of the
information bound. Increasing this parameter from some base value
yields a hierarchy of partitions that monotonically decrease the modified-
free-energy difference. Each hierarchy element corresponds to a partition
with an increasing information bound amount and hence a potentially
increasing number of state groups. Finer-scale group structure in the
transition matrix is captured as the parameter value rises. After some free-
parameter value threshold, however, there are diminishing returns on the
aggregation quality. Finding this threshold, in a completely data-driven
fashion, is thus crucial: over-partitioning the original chain leads to a
non-parsimonious representation that can be computationally expensive
to evaluate.

To automatically discern the optimal number of state groups for arbi-
trary Markov chains, we modify the value-of-information cost function
and hence its updates. For this modified criterion, the first update step
trades off the divergence of the original and aggregated chain transition
probabilities against the mutual dependence between the original and ag-
gregated chain dynamics. The remaining updates then trade off between
how well the reduced-order model dynamics are compressed versus how
much information about the original-chain dynamics is retained. That is,
it follows an information-bottleneck model [26] with the added effect
that the resulting Markov chain resembles the original. Through update
schedule, we are guaranteed that the negative modified-free-energy-
difference curve is, in general, convex. We can therefore find a maximal
value on the curve. This value corresponds to the situation where the
aggregation process begins to overfit to noise in the Markov-chain tran-
sition dynamics versus the underlying nearly-completely-decomposable
structure if more state groups are added.

2. METHODOLOGY
Our approach for aggregating Markov chains can be described as

follows. Given a stochastic matrix Π∈Rn×n+ of transition probabilities
between n states, we seek to partition this matrix to produce a reduced-
size stochastic matrix Φ∈Rm×m+ with m states. Since there are many
possible Φ’s that can be formed, we would like one with the least
divergence to Π for some measure. Due to the different sizes of Π and Φ,
though, directly assessing divergence is not possible. To facilitate this
comparison, we consider the construction of a joint-model stochastic
matrix Θ∈Rm×n+ that encodes the dynamics of Φ.

The definition of Θ relies on finding a partition matrix Ψ∈Rm×n+ for
determining which states inΠ should be combined to create an aggregated
state in Φ. We show that an optimal Ψ and Θ, and hence Φ, can be found by
solving a modified value-of-information criterion. We then characterize
the errors associated with estimating this modified value-of-information
for Markov chains with a finite number of states. Removing the errors
penalizes marginal improvements in the divergence associated with
including more state groups m. This non-linearly transforms the value
of information such that it contains a global maximum for a single
state group count. We then specify an expression for this value, which
coincides where the aggregation complexity is balanced against the
preserved information.
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2.1 Preliminaries
For our approach, we consider a first-order, homogeneous Markov

chain defined on a finite state space. We assume that is nearly-completely
decomposable.

Definition 2.1. The transition model of a first-order, homogeneous,
nearly-completely-decomposable Markov chain is a weighted, directed
graph Rπ given by the three-tuple (Vπ, Eπ,Π) with:

(i) A set of n vertices Vπ = v1
π ∪ . . . ∪ vnπ representing the

states of the Markov chain.
(ii) A set of n×n edge connections Eπ ⊂ Vπ×Vπ between

reachable states in the Markov chain.
(iii) A stochastic transition matrix Π∈Rn×n+ . Here, [Π]i,j =

πi,j represents the non-negative transition probability between
states i and j. We impose the constraint that the probability
of experiencing a state transition is independent of time. More-
over, for a block-diagonal matrix Π∗ with zeros along the diag-
onal, we have that Π = Π∗+εC. Π∗ ∈ Rn×n+ is a completely-
decomposable stochastic matrix with m indecomposable sub-
matrix blocks Π∗i of order ni. The matrix C ∈ Rn×n+ satisfies∑ni
k=1 cpi,ki =−

∑
j 6=i
∑nj

q=1 cpi,qj ∀pi, for blocks Π∗i and Π∗j .

Throughout, we assume that all Markov chains are irreducible and
aperiodic. As a consequence, there is a unique invariant probability
distribution γ associated with the chain such that γ>Π=γ>.

We are interested in comparing pairs of nearly-completely-
decomposable Markov chains. A means to do this is by considering
given rows of the stochastic transition matrix Π with those of a reduced-
order chain’s stochastic matrix Φ. We will perform this comparison
via the negative Kullback-Leibler divergence. It coincides with the
Donsker-Varadhan rate function appearing in the large-deviations theory
of Markov chains [27, 28] and measures the dissimilarity between chains
defined on the same discrete state space.

Since we are considering the problem of chain aggregation, the
discrete state spaces will be different. One chain Rπ will have n states
while anotherRϕ will havem states. The dimensionalities of given rows
in the corresponding transition matrices will hence not be equivalent,
which precludes a direct comparison using the discrete Kullback-Leibler
divergence. To resolve this issue, we consider construction of a joint
model Rϑ. This joint model defines a joint state space composed of the
states from Rπ and Rϕ. It, however, re-defines the edge set along with
the weighting matrix. This weighting matrix Θ has the same number of
columns as Π and the same dynamics as Φ, which facilitates comparisons
using conventional divergences.

The joint model relies on the specification of a partition matrix Ψ for
mapping states from the reduced-order model Rϕ to the original model
Rπ . Here, we consider probabilistic partition functions so as to capture
the inherent uncertainty in the state combination.

Definition 2.2. Let Rπ = (Vπ, Eπ,Π) and Rϕ = (Vϕ, Eϕ,Φ) be tran-
sition models of two Markov chains over n and m states, respec-
tively. A probabilistic partition function ψ is a surjective mapping

between two state index sets, Z1:n and Z1:m, such that ψ−1(Z1:m)
is a partition of Z1:n, which has a given probabilistic chance of oc-
curring. That is, ψ−1(j) ⊂ Z1:n × Rn+ is not empty and where
ψ−1(1) ∪ . . . ∪ ψ−1(m) = Zm1:n × Rm×n+ , with the real-valued re-
sponses being non-negative and summing to one.

The probabilistic partition of a state index set induces a probabilistic
partition matrix [Ψ]i,j = ψi,j , where ψi,j = ζ if i ∈ ψ−1(j) occurs
with probability ζ. The set of all probabilistic partition matrices is
{Ψ∈Rn×m+ |[Ψ]i,j =ψi,j ∈ [0, 1],

∑m
j=1 ψi,j =1}.

Definition 2.3. Let Rπ = (Vπ, Eπ,Π) and Rϕ = (Vϕ, Eϕ,Φ) be tran-
sition models of two Markov chains over n and m states, respectively,
wherem<n.Rϑ=(Vϑ, Eϑ,Θ) is a joint model, withm+n states, that
is defined by

(i) A vertex set Vϑ=Vπ ∪ Vϕ, which is the union of all state
vertices in Rπ and Rϕ.

(ii) An edge set Eϑ ⊂ Vϕ×Vπ , which are one-to-many map-
pings from the states in the original transition model Rπ to the
reduced-order transition model Rϕ.

(iii) A weighting matrix Θ∈Rm×n+ . The partition function ψ
provides a relationship between the stochastic matrices Φ and Θ
of Rϕ and Rϑ, respectively. This is given by Φ=ΘΨ, or, rather,
ϕi,j =

∑n
k=1 ϑk,jψk,i ∀i, j, where Ψ is a probabilistic partition

matrix; here, ψi,j =p(vjϕ|viπ) and ϕi,j =p(vjϕ|viϕ).

Our corresponding technical report should be consulted for further details
about these choices and illustrations of the various concepts [29]. This
report also contains proofs for many of the ensuing claims.

2.2 Aggregating Markov Chains
For any given transition modelRπ , we would like to find, by way of

the joint model Rϑ, another transition model Rϕ with fewer states that
resembles the dynamics encoded by Rπ . At the very least, a model Rϑ
should be sought with a weighting matrix Θ that has the least expected
divergence with respect to the transition matrix Π of Rπ for some
partition.

Definition 2.4. Let Rπ = (Vπ, Eπ,Π), Rϕ = (Vϕ, Eϕ,Φ), and Rϑ =
(Vϑ, Eϑ,Θ) be transition models of two Markov chains over n and m
states and the joint model over n+m states, respectively. The least
expected divergence between Π and Θ, and hence Π and Φ, is given in
(1). Here, γi=p(viπ) and πi,k=p(viπ|vkπ).

The least expected distortion possesses too few constraints to make
discerning the number of state groups m viable, though.

To help discern m, we impose that the partitions should minimize
the information loss associated with the state quantization process. That
is, the mutual dependence between states in the high-order and low-
order chains should be maximized with respect to a supplied bound.
Simultaneously, the least expected divergence, for this bound, should be
achieved while also seeking a maximal compression of the dynamics.
Realizing each of these competing objectives leads to a combined value-
of-information and information-bottleneck aggregation process.
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Definition 2.5. Let Rπ = (Vπ, Eπ,Π), Rϕ = (Vϕ, Eϕ,Φ), and Rϑ =
(Vϑ, Eϑ,Θ) be transition models of two Markov chains over n and m
states and the joint model over n+m states, respectively. An optimal
reduced-order transition model Rϕ with respect to the original model
Rπ can be found as follows:

(i) Optimal partitioning: Find a probabilistic partition matrix
Ψ that solves (2) for some r ∈ R+; r has an upper bound of
−
∑n
i=1 γilog(γi). As well, find the corresponding weighting ma-

trix for Rϑ: Θ=U>Π, where [U ]i,j =γiψi,j/
∑n
p=1 γpψp,j .

(ii) Transition matrix construction: Obtain the transition matrix
for Rϕ via: ϕi,j =

∑n
k=1 ϑk,jψk,i using the optimal weights Θ

and the probabilistic partition matrix Ψ from step (i).
Here, αj = p(vjϕ), ωq = p(q), ηq,i = p(q|viπ), and κq,j = p(q|vjϕ) for
some intermediate random variable q.

A reason for considering this combined model is that simply trading
off between the preserved information and the model complexity, as in
the information bottleneck, does not encode notions of the underlying
weighted-graph geometry. This is because Shannon information is geo-
metrically invariant: it yields an infinite set of degenerate solutions that
do not minimize a specific divergence measure.

Global solutions to (2) can be found via the initial condition in (3)
and the expectation-maximization-like updates in (4).

Proposition 2.1. Let Rπ = (Vπ, Eπ,Π) and Rϕ = (Vϕ, Eϕ,Φ) be
transition models of two Markov chains over n and m states. The
optimal partition matrix Ψ that globally solves (2) can be found via the
alternating update in (3) for iteration k=0 and the alternating updates
in (4) for iterations k=1, 2, . . . Here, β∈R+ is a Lagrange multiplier
for handling the constraint bound r∈R+.

The following proposition shows that the number of reduced-model state
groups increases once β reaches certain critical values.

Proposition 2.2. Let Rπ = (Vπ, Eπ,Π) and Rϕ = (Vϕ, Eϕ,Φ) be
transition models of two Markov chains over n and m states. For some
β0, suppose Θβ0 , the matrix Θ for that value ofβ0, satisfies the following
inequality d2/dε2 F (Ψ,K, α; Π,Θβ0 + εQ,H, γ)|ε=0 > 0, for the
modified value-of-information Lagrangian from (2). Here,Q∈Rm×n+ is
such that

∑m
k=1 q

>
k,1:nqk,1:n=1 and

∑n
j=1 qi,j =0 ∀i. A critical value

βc satisfies

βc=minβ>β0 (d2/dε2 F (Ψ,K, α; Π,Θβ+εQ,H, γ)|ε=0 ≤ 0).

The number of rows in Θ and columns in Ψ needs to be increased, by
one, once β>βc, since a phase change occurs.

Sweeping over critical values of β yields a hierarchy of probabilistic
partitions Ψ and hence reduced-order-model transition matrices Φ with
different numbers of state groups.

This proposition does not, however, reveal a way to find the optimal
number of state groups. To do that, we will determine when the modified
value-of-information begins to overfit to the transition-dynamics noise.
This leads to additional terms that we can subtract from the criterion to

essentially regularize the aggregation and penalize for using too many
or too few state groups than can be resolved in the transition dynamics.

2.2.1 Aggregated State Group Count
We assume, for the modified value-of-information, that overfitting

to noise is a byproduct of dealing with finite-state-space Markov chains
and hence introducing estimation errors into the joint probabilities.
Characterizing the error effects and removing them yields a version of
the value-of-information curve that is either convex or monotonically
non-decreasing then monotonically non-increasing.

Definition 2.6. Let Rπ = (Vπ, Eπ,Π), Rϕ = (Vϕ, Eϕ,Φ), and Rϑ =
(Vϑ, Eϑ,Θ) be transition models of two Markov chains over n and m
states and the joint model over n+m states, respectively. An optimal
reduced-order transition model Rϕ, with respect to the original model
Rπ , can be found as follows:

(i) Optimal partitioning: Find a probabilistic partition matrix
Ψ that solves (5) for some r ∈ R+. Equation (5) has the same
constraint set as (2). Find the corresponding weighting matrix for
Rϑ: Θ=U>Π, where U is defined above.

(ii) Transition matrix construction: Obtain the transition matrix
for Rϕ via: ϕi,j =

∑n
k=1 ϑk,jψk,i using the optimal weights Θ

and the probabilistic partition matrix Ψ from step (i).
The systematic underestimation/overestimation error in (2) is gth-

order minimized when solving (5).

Proposition 2.3. Let Rπ = (Vπ, Eπ,Π) and Rϕ = (Vϕ, Eϕ,Φ) be
transition models of two Markov chains over n and m states. The
optimal partition matrix Ψ forRπ that globally solves (5) and facilitates
the construction of Rϕ can be found via the updates in (6) for iteration
k=0 and the update in (7) for iterations k=1, 2, . . . For (6) and (7), the
denominators are such that the partition-matrix entries are normalized
to become probabilities.

Here, αj = p(vjϕ), γi = p(viπ), ψi,j = p(vjϕ|viπ), ηq,i = p(q|viπ),
κq,j = p(q|vjϕ), τi,j = p(viπ|vjϕ), and ρq,j = p(q, vjϕ). The terms κq,j
and ηq,i represent the estimation errors associated with κq,j and ηq,i,
while γi is the error associated with approximating γi. We assume that
the average error is zero: E[ηq,i]=0 and E[γi]=0.

Due to the monotonicity properties of (5), we can construct upper and
lower bounds for it and characterize their rate of change with respect to
β. This permits algebraically discerning where maxima of the equivalent
dual problem (5) occur.

Proposition 2.4. Let Rπ=(Vπ, Eπ,Π), Rϕ=(Vϕ, Eϕ,Φ), and Rϑ=
(Vϑ, Eϑ,Θ) be transition models of two Markov chains over n and m
states and the joint model over n+m states, respectively. The dual
problem to (5) achieves a maximum for the Lagrange multiplier value
β∗=2

∑n
i=1

∑m
j=1 γiψi,j log(ψi,j/αj)/2n.

As before, the partitioning process defined by (6) and (7) undergoes a
series of phase changes whereby the number of state groups increase
once β exceeds some critical value. The value of β∗ specified by the
preceding proposition coincides with a partitioning where a certain
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Figure 1: Modified value-of-information-based partitioning results for 9-state nearly-completely-decomposable Markov chains with: (a) four discernible state groups
and (b) seven discernible state groups. In both (a) and (b), we show the original stochastic matrix Π with hardened versions of the partitions Ψ overlaid for four critical
values of β; as noted in the previous section,m can be inferred from each value of β. The unique colors in the partition plots correspond to which state group inΦ a state
in Π is most likely to be associated. The right-most plots highlight the Shannon information in blue and the error-subtracted Shannon information in green. After a
certain number of clusters, the Shannon information plateaus, indicating that there is negligible benefit for including more state groups in Φ. The modified Shannon
information begins to decrease when this occurs; the results align with the discernible number of groups for these chains.

number of state groups are defined. It can be taken as the point in
(5) where the complexity of the dynamics compression is balanced
against the information contained about the original Markov chain in the
reduced-order Markov chain. For (2),β∗ often marks the beginning of the
value-of-information’s asymptotic region where there are diminishing
returns for including more clusters.

3. SIMULATIONS
In this section, we assess the empirical performance of the modified

value-of-informationcriterion.We gaugehowwell thepredicted ‘optimal’
free-parameter value aligns with the discernible number of state groups
for nearly-completely-decomposable Markov chains.

3.1 Simulation Protocols
We adopted the following simulation protocols for our aggregation

framework. We initialized the aggregation process with a partition matrix
of all ones, Ψ = [1]9×1, signifying that each state belongs to a single
group. This is the global optimal solution of the aggregation problem
and coincides with a parameter value β of zero for the modified value-
of-information. We then found the subsequent critical values of β and
increased the column count of Ψ. We determined which state group would
be further split and modified both the new column and an existing column
of Ψ to randomly allocate the appropriate states. This initialization
process bootstraps the quantization for the new cluster and typically
achieves convergence in only a few iterations. It also permits the value
of information to reliably track the global minimizer as β increases.

For certain problems, a priori specifying a fixed amount of partition
updates may not permit finding a steady-state solution. We therefore run
the alternating updates until no entries of the partition matrix change
across two iterations.

3.2 Simulation Results
We established the performance of the aggregation partitioning

process through twoexamples.Thefirst, showninfigure1(a), corresponds
to a Markov chain with nine states and four state groups with strong
intra-group interactions and weak inter-group interactions. This is a
relatively simple aggregation problem. The second example, presented
in figure 1(b), is of a nine-state Markov chain with a single dominant state
group and six outlying states with near-equal transition probabilities.
This is a more challenging problem than the first, as the outlying states

cannot be reliably combined without adversely impacting the mutual
dependence.

In figures 1(a) and 1(b), we provided partitions for four critical values
of the free parameter β. The ‘optimal’ value of β, as predicted by our
modified value of information, leads to four and seven state groups
for the first and second examples, respectively. Here, we considered
a second-order approximation of the underestimation/overestimation
error, i.e., g=2. Higher-order approximations did not modify the shape
of the resulting Shannon-information curves much compared to those
in figures 1(a) and 1(b); the resulting ‘optimal’ number of state groups
remained the same in these cases.

For both examples, the associated partitions for the ‘optimal’ values
of β align well with an inspection of the dynamics of the stochastic
matrix: the partitions separate states that are more likely to transition to
each other from those that are not. Those partitions for ‘non-optimal’ β’s
either over- or under-quantize the chain states. That is, for critical β’s
before the ‘optimal’ value, there is a moderate increase in the Shannon
information, while the remaining βs only yield modest increases. The
‘optimal’ value ofβ for both examples, in contrast, lies at the ‘knee’ of this
curve, which is where the divergence minimization is balanced against
the competing objective of state-mutual-dependence maximization with
respect to some bound. It is also where the complexity of the aggregation
result is in harmony with the information it contains about the original
Markov chain.

To lend credence to these results, we considered forty reformulated
graph-based partition validity measures [30, 31] across a hundred Monte
Carlo simulations. For the Markov chain in figure 1(a), thirty-three
indices specified that there were four state groups while seven indices
indicated that there were three state groups. The results for the chain
in figure 1(b) had more uncertainty, which was due to the high number
of outlying states and the ability to combine them in multiple ways to
reduce the models’ divergence. Ten indices suggested that there were two
state groups, eight indices chose three state groups, while the remaining
twenty-two favored either six or seven state groups almost equally.
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