
EXACTLY DECODING A VECTOR THROUGH RELU ACTIVATION

Samet Oymak and M. Salman Asif

Department of Electrical and Computer Engineering
University of California, Riverside

ABSTRACT

We consider learning a d-dimensional parameter w through
nonlinear input/output relation governed by ReLU activation.
We study a supervised learning setup in which we want to
decode w from input/output pairs (x,y). We consider an
additive model with nonlinear ReLU activation that can be
represented as y = ∑dk=1 ReLU(w[k] + x[k]). Such a model
appears in representation learning and recommendation sys-
tems where w corresponds to an unknown embedding of a
user or item and the x correspond to embedding of known
probe vectors. In this paper, we show that a gradient descent
algorithm linearly converges with O(d) samples and quickly
finds the true parameter w under mild assumptions. Our as-
sumptions are in terms of the input distribution that captures
the fundamentals of the problems. We also demonstrate the
performance of our algorithm with numerical simulations.

1. INTRODUCTION

In this paper we study a problem of recovering a d-dimensional
parameter from its nonlinear measurements. We consider a
single layer neural network that maps vector inputs to scalar
outputs by first applying a linear weight matrix to each input,
followed by a rectified linear unit (ReLU) activation and a
summation (pooling operation). In particular, we want to re-
cover a signal w⋆ from input/output pairs {xi, yi}ni=1, where
each yi can be represented as a function of xi +w⋆. Such
additive models often appear in representation learning and
recommendation systems [1–4], where w⋆ represents a hidden
information about some item or user and xi represent fea-
tures related to users actions (e.g. features of movies watches)
that can help infer w⋆. In practice, denoting user and video
representation by u and vi, and the input layer of the neural
recommendation model by M = [Mu Mv], w⋆ and xi corre-
sponds to the features at the end of the first layer obtained via

w⋆ + xi = [Mu Mv] [
u
vi

]. Later, these features are passed

through activations and other layers. An illustration of the
encoding model is depicted in Fig. 1.

This paper studies the additive learning problem (1) and
provides non-asymptotic algorithmic guarantees for ReLU
activation. We show that, nonlinearities actually facilitate

Unknown
(user feature)

Known
(probe

features)
…

?
?

Concatenated
feature

?d +=

Summation for
scalar outputs

?

Linear
(invertible)
mapping

ReLu
activation

<latexit sha1_base64="6+ZjB9S9fqw/jU+I7QEAeNwJRxk=">AAACHHicbVDLSsNAFJ34rPFVdelmsAiCUBIR7LLgxmUF+4Amlslk0g6dTMLMRA0h/+FK0G9xJ24FP8WdkzQL23pg4HDOvXMPx4sZlcqyvo2V1bX1jc3alrm9s7u3Xz847MkoEZh0ccQiMfCQJIxy0lVUMTKIBUGhx0jfm14Xfv+BCEkjfqfSmLghGnMaUIyUlu4fz50QqYkXZE/5iI7qDatplYDLxK5IA1TojOo/jh/hJCRcYYakHNpWrNwMCUUxI7npJJLECE/RmAw15Sgk0s3K1Dk81YoPg0joxxUs1b8bGQqlTENPTxYZ5aJXiP95w0QFLTejPE4U4Xh2KEgYVBEsKoA+FQQrlmqCsKA6K8QTJBBWuqj5K0KgNDdNp/ws80lAOS2Kk7nuyl5sZpn0Lpq21bRvLxvtVtVaDRyDE3AGbHAF2uAGdEAXYCDAM3gFb8aL8W58GJ+z0RWj2jkCczC+fgG9vaNO</latexit>

<latexit sha1_base64="+0d3Zq8D2BKV996sv/hkMKPbxGQ=">AAACGHicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjRuhgm3FJpTJZNIOnUzCzEQIIX/hStBvcSdu3fkp7kzSLGzrgYHDua8zx404U9o0v43a2vrG5lZ9u7Gzu7d/0Dw8GqgwloT2SchD+eBiRTkTtK+Z5vQhkhQHLqdDd3Zd1IdPVCoWinudRNQJ8EQwnxGsc+nRDrCeun56m42bLbNtlkCrxKpICyr0xs0f2wtJHFChCcdKjSwz0k6KpWaE06xhx4pGmMzwhI5yKnBAlZOWjjN0lise8kOZP6FRqf6dSHGgVBK4eWfhUC3XCvG/2ijWfsdJmYhiTQWZH/JjjnSIiu8jj0lKNE9ygolkuVdEplhiovOQFq9IiZOs0bDLZalHfSZYEZoqsrKWk1klg4u2Zbatu8tWt1OlVocTOIVzsOAKunADPegDAQHP8ApvxovxbnwYn/PWmlHNHMMCjK9fdHShkQ==</latexit>

<latexit sha1_base64="hm0jnMd/E0oYcRV93waYn5DvQRE=">AAACOnicdVDLSsNAFJ34rPFVdelmsAgiUpJY2roruHFZwT6gCWUynbRDJ5MwMxFKyD/4Na4E/Q237sStG3dO+gAreuDC4Zz74vgxo1JZ1quxsrq2vrFZ2DK3d3b39osHh20ZJQKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+OPr3O/cEyFpxO/UJCZeiIacBhQjpaV+8Tx1p0t6Yuh7qVW+qledSvXCKltWzXbsnDi1ymUlS7J+sbTw4cKHCx/aWslRAnM0+8UvdxDhJCRcYYak7NlWrLwUCUUxI5npJpLECI/RkPQ05Sgk0kun72TwVCsDGERCF1dwqv6cSFEo5ST0dWeI1Ej+9nLxL6+XqKDupZTHiSIczw4FCYMqgnlAcEAFwYpNNEFYUP0rxCMkEFY6xuUrQqBJZprudFk6IAHlNI9V5lktAoH/k7ZTtq2yfVspNerz1ArgGJyAM2CDGmiAG9AELYDBA3gEz+DFeDLejHfjY9a6YsxnjsASjM9vEK2rGA==</latexit>

<latexit sha1_base64="g6ycGyDbUOTu8pNAWZ8+S1/ywOs=">AAACPHicbZBNSwJBGMdn7c3szerYZUmCDiIzEqk3oUtHg3wBXWR2nNXB2dllZlaQZb9En6ZTUN+ie7foGnRrdvWQ2gMP/Pg/r/zdkDOlIXy3clvbO7t7+f3CweHR8Unx9KyjgkgS2iYBD2TPxYpyJmhbM81pL5QU+y6nXXd6l9a7MyoVC8SjnofU8fFYMI8RrI00LJbjQbakL8euE8MKhBAhVE4B1W6hgUajXkX1ZDZEybBYyjpM2JuAllACy2gNiz+DUUAinwpNOFaqj2ConRhLzQinSWEQKRpiMsVj2jcosE+VE2cPJfaVUUa2F0iTQtuZ+ncixr5Sc981nT7WE7VeS8X/av1Ie3UnZiKMNBVkcciLuK0DO7XIHjFJieZzA5hIZn61yQRLTLQxcvWKlHieFAqDbFk8oh4TLDVWpV6hdWc2oVOtIFhBDzelZn3pWh5cgEtwDRCogSa4By3QBgQ8gWfwCt6sF+vD+rS+Fq05azlzDlbC+v4F5Karbw==</latexit> <latexit sha1_base64="vqmaAUDCSXaGr1wAuarWpFPIiA0=">AAACPHicbZBNSwJBGMdn7c3szerYZUmCDiIzEqk3oUtHg3wBXWR2nNXB2dllZlaQZb9En6ZTUN+ie7foGnRrdvWQ2gMP/Pg/r/zdkDOlIXy3clvbO7t7+f3CweHR8Unx9KyjgkgS2iYBD2TPxYpyJmhbM81pL5QU+y6nXXd6l9a7MyoVC8SjnofU8fFYMI8RrI00LJbjQbakL8euE8MKhBAhVE4B1W6hgUajXkX1ZDYUybBYyjpM2JuAllACy2gNiz+DUUAinwpNOFaqj2ConRhLzQinSWEQKRpiMsVj2jcosE+VE2cPJfaVUUa2F0iTQtuZ+ncixr5Sc981nT7WE7VeS8X/av1Ie3UnZiKMNBVkcciLuK0DO7XIHjFJieZzA5hIZn61yQRLTLQxcvWKlHieFAqDbFk8oh4TLDVWpV6hdWc2oVOtIFhBDzelZn3pWh5cgEtwDRCogSa4By3QBgQ8gWfwCt6sF+vD+rS+Fq05azlzDlbC+v4FSrGrrA==</latexit>

…

<latexit sha1_base64="7nIc1BBjGNnGQ8l6uTsFf0KTa8E=">AAACQHicbVDLSsQwFE19O75GXboJDoIiDK0bZyMIbly4UHFUmI4lzdxqME1LcquW0t/wa1wJ+g/+gTtxqSvTcRBfBwKHc+4rJ0ylMOi6T87Q8Mjo2PjEZG1qemZ2rj6/cGySTHNo80Qm+jRkBqRQ0EaBEk5TDSwOJZyElzuVf3IF2ohEHWGeQjdm50pEgjO0UlB380DQLerHDC/CqPDKsyPqI9xgcQh7Wbl6Tde/zJsyEGtBveE23T7oX+INSIMMsB/U3/xewrMYFHLJjOl4bordgmkUXEJZ8zMDKeOX7Bw6lioWg+kW/Z+VdMUqPRol2j6FtK9+7yhYbEweh7ayOtL89irxP6+TYdTqFkKlGYLin4uiTFJMaBUT7QkNHGVuCeNa2Fspv2CacbRh/tyiNcvLWs3vDyt6EAklqnBNabPyfifzlxxvND236R24je3WILUJskSWySrxyCbZJrtkn7QJJ7fkjjyQR+feeXZenNfP0iFn0LNIfsB5/wAS67B4</latexit>

Fig. 1: Block diagram of the encoding model in which an unknown feature
vector is mapped to a scalar output of a single-layer neural network. Assume
that the unknown feature vector is combined with a known probe signal
using an invertible linear function. The output of the linear function can be
represented as w + xi, where w is an unknown signal that depends on the
hidden feature vector and xi is a known signal that depends on the probe
signals. w + xi passes through a ReLU activation function, and we observe
sum of all the positive entries in w + xi as yi = 1T max(0,w + xi). Our
goal is to recover w from minimum possible samples in a computationally
efficient manner. Our main result shows that withO(d) samples and using a
centered gradient descent method, we can linearly converge to the true w.

learning and gradient descent quickly and globally converges
to the ground truth representation w⋆ is possible. This is in
contrast with related works on shallow fully-connected neural
networks where gradient descent can get stuck on local minima
and convergence rate suffers from growing number of hidden
units even with good initialization [5, 6]. Furthermore, the
sample complexity of gradient descent is near minimal, namely
n ≥ O(d).

Our second contribution is characterizing the problem pa-
rameters that enables convergence. The existing literature
mostly focuses on Gaussian or separable data [5, 7, 8]. We
show convergence results for arbitrary distributions (e.g. heavy
tailed). In particular, convergence properties are in terms of
the tail probabilities.

Finally, we introduce a variation of gradient descent algo-
rithm that drastically speeds up the convergence compared to
vanilla GD. This speed up occurs due to a centering trick that
removes the impact of expectation from the system. This strat-
egy was inspired from the label debiasing argument utilized
in the recent work [8]. It can also be seen in similar spirit to
techniques such as batch normalization that attempts to whiten
the features. We demonstrate the benefit of this numerically.

3607978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

1.1. Related Work

There is a growing literature on the theoretical aspects of
deep learning and provable algorithms for training neural net-
works. Most of the existing results are concerned with feed-
forward networks [5, 9–17]. [9, 14–16] consider learning fully-
connected shallow networks with gradient descent. [8, 10, 13]
address convolutional neural networks; which is an efficient
weight-sharing architecture. [7,18] studies over-parameterized
networks when data is linearly separable. [8, 14] utilize ten-
sor decomposition techniques for learning feedforward neural
nets. [11, 19] study signal recovery from ReLU activation for
related linear models.

2. PROBLEM STATEMENT

Let φ be the ReLU nonlinearity φ(a) = max{0, a}. Given a
latent parameter w⋆ ∈ Rd and input data x ∈ Rd, we define the
following additive nonlinearity f defined as

f(x;w⋆) =
d

∑
k=1

φ(w⋆[k] + x[k]) ≡ 1Tφ(w⋆ + x), (1)

where w⋆[k],x[k] represent kth entry in vectors w⋆,x. Note
that output is obtained by entrywise interactions with input
data and ReLU activation. These interactions are entangled
as we sum over them. Our goal will be understanding the
optimization landscape of this function; which is connected to
representation learning. To do this, we consider a dataset of n
samples (xi, yi) and assume that, the latent parameter w⋆ is
responsible for the labels i.e. the labels satisfy yi = f(xi;w⋆)
for all 1 ≤ i ≤ n.

To learn latent parameter w⋆, we will study a quadratic
loss function over our dataset and consider empirical risk min-
imization problem. Given a vector w ∈ Rd, this loss is given
by

L(w) = 1

2n

n

∑
i=1

(yi − f(xi;w))2. (2)

This loss will be minimized using first order methods, such
as, gradient descent (GD). The next section describes our
approach to this problem.

2.1. Algorithm

Our algorithm is a novel variant of GD that includes projection
and centering. Typically, we can run the GD iterations

ŵ =w − µ∇L(w). (3)

Empirically, as discussed in Section 4, we observed that GD
does not converge quickly. To address this, we apply two
modifications. First observe that labels have positive mean
because ReLU output is always positive. In practice, this bias
slows down the convergence rate. To speed it up, we study the
centered gradient descent where we center residuals with the

empirical average r̄(w) = 1
n ∑

n
i=1(f(xi;w) − yi). With this,

the centered gradient for our loss is given by

∇L̂(w) = 1

n

n

∑
i=1

(f(xi;w) − yi − r̄(w))1(w + xi). (4)

Here, 1 is the entrywise step function that corresponds to
ReLU derivative. 1(x) = 1 if x ≥ 0 and 0 if x < 0. Secondly,
we assume entries of w⋆ are bounded by a quantity Θ. This as-
sumption is necessary for learning if data has bounded entries
as well. We utilize this information by projecting our solution
to the set CΘ = {w ∈ Rd ∣ ∥w∥∞ ≤ Θ}. Combining these two
modifications, given current estimate w, the next iterate of our
algorithm is given by

ŵ = PCΘ
(w − µ∇L̂(w)),

where PCΘ
is the projection operator that clips the entries of

a vector that are outside of ±Θ interval. To state our techni-
cal result, we need the following quantities that capture the
distribution of the data.

Definition 2.1 (Critical quantities) Let X be a random vari-
able with finite first moment (i.e. E ∣X ∣ <∞) and let θ > 0 be a
scalar. Define θ-tail functions T and S as

T (θ) = P(X ≥ θ)P(X < −θ),
S(θ) = sup

∣γ∣≤θ
P(X ≥ γ)P(X < −γ).

Observe that T (θ) ≤ S(θ) ≤ 1/4.

Observe that, if X has a continuous distribution, as Θ gets
smaller, both of these quantities converge to P(X ≥ 0)P(X <
0). If the probability density function fX is bounded, (i.e. sat-
isfies fX(t) ≤ B), we have that T (θ) ≥ T (0) −ΘB. .We also
always have T (Θ) ≤ S(Θ) which can be upper bounded in
a similar fashion. In summary, these are fairly manageable
quantities which will govern our main result.

3. MAIN RESULT

The following theorem is our main result on iterative conver-
gence of the proposed algorithm.

Theorem 3.1 Suppose X is a random variable with finite
first moment. Let (xi)ni=1 be independent vectors with i.i.d.
entries distributed with X . Let K be an integer and suppose
n =Kn̄ where n̄ ≥ O(d logn/T (Θ)2). Suppose labels satisfy
yi = f(xi;w⋆). Pick a learning rate µ = 2T (Θ)

9S(Θ)2 . Split n
datapoints into K batches of equal size. Let Li be the loss
function corresponding to the ith batch. Starting from an
initial point w0, consider the iterations

wτ+1 = PCΘ
(wτ − µ∇L̂τ(wτ)).

With probability 1 − 2dKn̄−10, for all K ≥ τ ≥ 0,

∥wτ −w⋆∥2
`2 ≤

⎛
⎝

1 − (T (Θ)
3S(Θ)

)
2⎞
⎠

τ

∥w0 −w⋆∥2
`2 .

3608

This result implies that, as long as the data distribution X is
rich enough (i.e. large tails), gradient descent can exactly de-
code the latent vector with linear rate of convergence. Unlike
existing literature; which mostly focuses on normal distribu-
tion, our results apply to any distribution. In fact, perhaps
counterintuitively, as the tail of the distribution becomes larger,
convergence is faster! Also, note that, for constant K, our the-
orem needs only O(d logn) samples; which is proportional
to the parameter dimension, hence we achieve near-optimal
sample complexity.

To prove this result, we first characterize the improve-
ment due to a single data batch i.e. a single gradient iteration.
We then apply this result K times and use a union bound to
conclude. We use mini-batches due to technicalities (i.e. de-
pendence of the iterates); however since we achieve linear rate
of convergence, we need only K = O(log(1/ε)) to achieve ε
accuracy. We also remark that setting S(Θ) ≤ 1/4, the con-
vergence rate can be simplified to 1 − 16T (Θ)2/9. In the next
section, we discuss the critical ideas in our proof strategy.

3.1. Approach

A standard idea for gradient descent analysis is ensuring gra-
dient has a large component in the direction of the parameter
error w − w⋆ i.e. strong convexity. The following lemma
highlights this.

Lemma 3.2 Given vectors w,w⋆ ∈ CΘ and scalars β ≥ α > 0,
suppose

• (w −w⋆)T∇L̂(w) ≥ α∥w −w⋆∥2
`2

• ∥∇L̂(w)∥2 ≤ β∥w −w⋆∥`2 .

ŵ = PCΘ
(w − µ∇L̂(w)). Then, setting learning rate µ =

α/β2, ŵ obeys ∥ŵ −w⋆∥`2 ≤ ∥w −w⋆∥2
`2
(1 − α2/β2).

The centering trick plays a critical role in our fast convergence
result. Given a random variable X , define debiasing opera-
tor as zm(X) = X − E[X]. Suppose (xi, yi) ∼ (x, y) are
i.i.d. samples where y = f(x;w⋆). Observe that E[r̄(w)] =
E[f(x;w) − y] hence, we have that

E[∇L̂(w)] = E[(f(x;w) − y − r̄(w))1(w + x)]
= E[zm(f(x;w) − y)1(w + x)] − E[zm(r̄(w))1(w + x)]
= (1 − 1/n)E[zm(f(x;w) − y)1(w + x)]. (5)

With this, we decompose the centered gradient into an expec-
tation term and two additional zero-mean terms via ∇L̂(w) =
E[∇L̂(w)] + n−1(∇L1(w) +∇L2(w)). The latter terms are

∇L1(w) =
n

∑
i=1

zm(zm(f(xi;w) − yi)1(w + xi)) (6)

∇L2(w) = zm(zm(r̄(w))
n

∑
i=1

1(w + xi)) (7)

The challenge in the analysis is two-folds. First, we need to
understand, how beneficial is the expectation. This character-
izes the convergence rate if we had access to infinite amount
of data. Secondly, we shall view ∇L1(w),∇L2(w) as noise
and argue that, for sufficiently large n (i.e. n ≳ d logn), their
affect on the convergence will be small with high probability.
This two-fold analysis is typical in empirical risk minimization
problems [11, 12, 20]. In our case, it is rather straightforward
to argue that ∇L2(w) term is small.
Population landscape: The next lemma is one of our key
observations to analyze E[∇L̂(w)] term.

Lemma 3.3 (Significant correlation) Let X be a random
variable with E ∣X ∣ <∞. Given a, b ∈ R satisfying Θ > ∣a∣, ∣b∣ ≥
0. Set ΦX(a, b) = EX[zm(φ(a +X) − φ(b +X))1(a +X)].
We have that

∣a − b∣S(Θ) ≥ sgn(a − b)ΦX(a, b) ≥ ∣a − b∣T (Θ).

This shows that, if the randomness (i.e. diversity) in data is
strong enough, φ(a +X) − φ(b +X) will behave like a − b
in average, up to some constants S(Θ),T (Θ). Recalling the
form of the gradient (5) and applying Lemma 3.3 entrywise on
E[∇L̂(w)], we show below that gradient and residual w−w⋆

is highly correlated in expectation. captures the impact of the
expectation term E[∇L̂(w)]

Corollary 3.4 (Expected strong convexity) Suppose w,w⋆ ∈
CΘ. Generate independent vectors {xi}ni=1 ∈ Rd with i.i.d.
entries distributed as random variable X . Then

(w −w⋆)T E[∇L̂(w)] ≥ (1 − 1/n)∥w −w⋆∥2
`2T (Θ).

Furthermore, ∥E[∇L̂(w)]∥`2 ≤ (1 − 1/n)S(Θ)∥w −w⋆∥`2 .

Finite sample analysis: Results so far, guarantees fast con-
vergence with infinite data, by applying Lemma 3.2. The
remaining task is obtaining finite sample complexity, which
will be achieved by proving∇L1(w) is small. This is achieved
by utilizing ideas from non-asymptotic statistics literature [21].
The main idea is that ∇L1(w) is sum of n i.i.d. terms; hence,
the variance of its entries should grow as n and its `2 norm
should grow as

√
nd. To obtain such bounds in probability, we

prove that each summand is a subexponential vector (see Def.
5.13 of [21]) and obtain the following `2 concentration bound.

Lemma 3.5 (Subexponential gradient) Consider the setup
in Lemma 3.2 Define per-sample gradient noise h(x) as

h(x) = zm(zm(f(x;w) − f(x;w⋆))1(w + x)).

Then subexponential norm of h(x) is at mostO(∥w −w⋆∥`2).
Furthermore, with probability 1 − exp(−cd), the total noise
∇L1(w) = ∑ni=1 zm(h(xi)) satisfies

∥h∥`2 ≤ O(∥w −w⋆∥`2
√
dn).

Finally, since ∇L̂(w) contains n−1∇L1(w), it means the
noise we suffer grows as

√
d/n∥w −w⋆∥`2 i.e. and no longer

hurts the convergence rate in the regime n ≳ d!

3609

4. NUMERICAL EXPERIMENTS

To demonstrate the empirical performance of our proposed
method, we performed a number of numerical simulations.
In all our experiments, we selected the true parameter w⋆ ∈
Rd as a random vector whose entries are independently and
uniformly in interval [−1,1]. We selected each xi ∈ Rd as a
vector whose entries follow i.i.d. Gaussian distribution with
zero mean and variance σ2. We evaluated the performance
of our recovery algorithm in terms of the values of the loss
function in (2) and the relative recovery error after a fixed
number of iterations. We define the relative recovery error as

relative recovery error = ∥ŵ −w⋆∥2
2

∥w⋆∥2
2

, (8)

where ŵ denotes the reconstructed values of the parameters.
Our main simulation results are presented in Fig. 2 and Fig. 3.

In our first experiment, we examine the performance of
our algorithm for different number of samples. The results are
summarized in Fig. 2, where we performed recovery experi-
ments for different values of d,n, and σ and plotted average
of the relative recovery error over 10 independent trials of
each experiment. We report results for d = 50, 100, 200, 500
over different values of n/d in Fig. 2. As we can observe in
Fig. 2(a)–(b) that for n/d ≥ 2, signal recovery is almost always
perfect. This observation matches our analysis that suggests
n ≳ d samples are sufficient for signal recovery. We also
observed that increasing the strength of xi (by changing σ)
does not affect the performance of the algorithm. In all these
experiments, we fixed the maximum number of iterations to
1000.

In our second experiment, we compared the performance
of centered gradient descent (described in (4)) with standard
gradient descent for a fixed step size. The results are presented
in Fig. 3, where we plot the values of loss function and relative
recovery error at every iteration of both algorithms, averaged
over 10 independent trials. The red (solid) curves represent
results for centered gradient descent and blue (dashed) curves
represent results for standard gradient descent. The shaded
regions indicate standard deviation of the results over 10 trials.
We present experiments for d = 100, n = 200 in Fig. 3(a) and
d = 500, n = 1000 in Fig. 3(b). Note that the x-axis (number of
iterations) is plotted on a log scale for presentation. We observe
that centered gradient descent converges to the true solution in
nearly 100 iterations for both cases, whereas standard gradient
descent takes much longer to converge. In all our experiments,
we selected maximum possible step size (learning rate) µ for
standard gradient descent, and multiplied µ by a large constant
to select the step size for the centered gradient descent. Both
algorithms use a fixed step size at every iteration. As noted in
Sec. 2.1, the positive bias in standard gradient descent slows
down its convergence rate, while the centered gradient descent
does not suffer from the bias problem.

(a) σ = 1 (b) σ = 10

Fig. 2: Performance of recovery algorithm for different values of n/d. We
showed that n ≳ d samples would be sufficient for exact signal recovery. We
observe that we get perfect recovery for n/d > 2. (a) and (b) compare the
performance for different values of σ (strength of the probe signals), but the
results look almost the same. Every point on these plots represents average
relative recovery error over 10 independent trials.

(a) Loss function and reconstruction
error for d = 100, n = 200, σ = 5

(b) Loss function and reconstruction
error for d = 500, n = 1000, σ = 5

Fig. 3: Signal recovery error for σ = 5, bounded signal, and ReLU activation.
The solid red curves plot average loss function while using mean-centered
gradient descent as defined in (4). The dashed blue curves plot average loss
function for standard gradient descent (without mean subtraction) with fixed
step size. The shaded error bars in both plots indicate the standard deviation
in the results over 10 trials. In all these experiments we selected the step size
µ that provides fastest convergences for the standard gradient descent method.
We provided a constant multiple of µ to our proposed gradient descent method.
The x-axis shows number of iterations on a logarithmic scale.

5. CONCLUSIONS

We presented an algorithm for exact recovery of a vector from
its nonlinear measurements through a ReLU activation func-
tion. We used an additive model for the measurements, which
appears in representation learning and recommendation sys-
tems and showed that the unknown signal can be recovered
exactly fromO(d) samples. We also showed that by removing
the mean of the residual from the gradient, we can minimize
the loss function and converge to the true solution linearly.

3610

6. REFERENCES

[1] Paul Covington, Jay Adams, and Emre Sargin, “Deep
neural networks for youtube recommendations,” in Pro-
ceedings of the 10th ACM Conference on Recommender
Systems. ACM, 2016, pp. 191–198.

[2] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua, “Neural collaborative filter-
ing,” in Proceedings of the 26th International Conference
on World Wide Web. International World Wide Web Con-
ferences Steering Committee, 2017, pp. 173–182.

[3] Shuai Zhang, Lina Yao, and Aixin Sun, “Deep learning
based recommender system: A survey and new perspec-
tives,” arXiv preprint arXiv:1707.07435, 2017.

[4] Yoshua Bengio, Aaron Courville, and Pascal Vincent,
“Representation learning: A review and new perspectives,”
IEEE transactions on pattern analysis and machine in-
telligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[5] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and
Inderjit S Dhillon, “Recovery guarantees for one-hidden-
layer neural networks,” arXiv preprint arXiv:1706.03175,
2017.

[6] Itay Safran and Ohad Shamir, “Spurious local minima
are common in two-layer ReLU neural networks,” arXiv
preprint arXiv:1712.08968, 2017.

[7] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai
Shalev-Shwartz, “Sgd learns over-parameterized net-
works that provably generalize on linearly separable data,”
arXiv preprint arXiv:1710.10174, 2017.

[8] Samet Oymak and Mahdi Soltanolkotabi, “End-to-end
learning of a convolutional neural network via deep ten-
sor decomposition,” arXiv preprint arXiv:1805.06523,
2018.

[9] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D
Lee, “Theoretical insights into the optimization land-
scape of over-parameterized shallow neural networks,”
arXiv preprint arXiv:1707.04926, 2017.

[10] Alon Brutzkus and Amir Globerson, “Globally opti-
mal gradient descent for a convnet with gaussian inputs,”
arXiv preprint arXiv:1702.07966, 2017.

[11] Mahdi Soltanolkotabi, “Learning ReLUs via gradient
descent,” arXiv preprint arXiv:1705.04591, 2017.

[12] Samet Oymak, “Learning compact neural networks with
regularization,” arXiv preprint arXiv:1802.01223, 2018.

[13] Kai Zhong, Zhao Song, and Inderjit S Dhillon, “Learning
non-overlapping convolutional neural networks with mul-
tiple kernels,” arXiv preprint arXiv:1711.03440, 2017.

[14] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar,
“Beating the perils of non-convexity: Guaranteed training
of neural networks using tensor methods,” arXiv preprint
arXiv:1506.08473, 2015.

[15] Yuanzhi Li and Yang Yuan, “Convergence analysis of
two-layer neural networks with ReLU activation,” in Ad-
vances in Neural Information Processing Systems, 2017,
pp. 597–607.

[16] Song Mei, Andrea Montanari, and Phan-Minh Nguyen,
“A mean field view of the landscape of two-layers neural
networks,” arXiv preprint arXiv:1804.06561, 2018.

[17] Samet Oymak, “Stochastic gradient descent learns state
equations with nonlinear activations,” arXiv preprint
arXiv:1809.03019, 2018.

[18] Gang Wang, Georgios B Giannakis, and Jie Chen,
“Learning ReLU networks on linearly separable data: Al-
gorithm, optimality, and generalization,” arXiv preprint
arXiv:1808.04685, 2018.

[19] Arya Mazumdar and Ankit Singh Rawat, “Representa-
tion learning and recovery in the ReLU model,” arXiv
preprint arXiv:1803.04304, 2018.

[20] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe,
“Convexity, classification, and risk bounds,” Journal of
the American Statistical Association, vol. 101, no. 473,
pp. 138–156, 2006.

[21] Roman Vershynin, “Introduction to the non-asymptotic
analysis of random matrices,” arXiv preprint
arXiv:1011.3027, 2010.

3611

		2019-03-18T11:12:20-0500
	Preflight Ticket Signature

