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ABSTRACT

In this paper we present a transformation to convert time signals into
a randomized low-dimensional vectors such that the inner product
between these new features provides information about the similar-
ity of the signals. We show that the described inner product approx-
imates a cross-correlation based kernel. This is very useful at the
moment of use Kernel Machines, such as Non-linear Support Vec-
tor Machines. Indeed, this allows to apply simpler and faster linear
methods on the generated random features. Our proposed scheme
improves computational storage and time cost over the direct ker-
nel approach, while performing the classification performance with
minimal loss. We support our statements by providing theoretical
guarantees as well as empirical evaluation across different data sets.

Index Terms— Time Signal Classification, Random Convolu-
tional Features, Kernel Machines.

1. INTRODUCTION

One particularly important task in time signal processing is signal
classification, where given a time signal, we must determine the class
it belongs to. Applications range from classification of medical time
signals (such as ECGs) to automatic speech recognition, classifica-
tion of financial series, astronomy, and even modeling language.

The most common approaches employ statistical models, such
as Hidden Markov Models [1] [2] [3], conditional random fields [4]
[5], or convolutional or recurrent neural networks [6] [7] [8] [9].
While highly effective, these approaches are typically data intensive,
prone to overfitting, and often need high tuning of hyperparameters.

An alternate approach is through kernel methods, such as sup-
port vector machines, which are generally less data intensive and
easier to optimize. However, these come with a concomitant chal-
lenge: that of defining an appropriate kernel that captures the sim-
ilarity between instances. Conventional similarity measures such
as the inner product will not suffice, since one must also consider
the alignment between time signals when computing their similarity.
Consider, for instance, the two signals sin(ωk) and sin(ωk + φ),
where k is the running time index. Although the two are structurally
identical, the inner product between the two will vary with the phase
shift φ. In order to correctly compute the similarity between the
two signals, they must be aligned to line up; however the amount of
shift will generally not be known a priori. Hence, a good similiarity
measure between time signals must be shift invariant.

Several common solutions for computing kernels between time
signals view them as regular vectors and do not consider the align-
ment between them [10]. Other approaches do implicitly consider
the issue, but generally construct expensive statistical machinery to
do so [11][12] [13] [14]. Fourier-transform-based methods trans-
form the signals into the Fourier domain, to deal with the issue of
shift invariance [15], however they effectively consider every align-
ment, not just the right one, making them susceptible to noise [16].

The kernels that best account for the alignment between the two sig-
nals are DTW-based kernels [17] [18] that explicitly find the optimal
warping between them in the process of computing their similarity.
However, the computational complexity of finding the optimal warp
is quadratic, or even cubic in the length of the sequences, making
them impractical in many scenarios.

Possibly the most appropriate similarity measure in this set-
ting is the peak cross-correlation between the signals. The cross-
correlation of two time signals computes the inner product between
the signals at every alignment between the two. Formally, given two
time signals f = (f1, ..., fN ) and g = (g1, ..., gN ) of length N , the
cross-correlation between the two, represented as f ? g, is the signal
computed as

(f ? g)i =
∑
k

fk · gk+i (1)

Different settings of the limits of the summation in k result in differ-
ent types of cross-correlation. The linear cross-correlation between
f and g is obtained by summing k from −∞ to ∞, assuming that
both f and g take value 0 outside the index range 1 · · ·N . The cir-
cular cross-correlation is obtained by summing k from 1 to N , and
assuming gk+i = gN−k−i for k + i > N [19]. The linear cross-
correlation may also be obtained from the circular cross-correlation
by zero-padding both signals out to length 2N and computing the
circular cross-correlation over the longer zero-padded sequences. In
either case, the outcome of Equation 1 is a complete time signal,
where each term (f ? g)i computes the inner product between f and
g when the latter has been shifted by i in order to line it up with f .

The peak cross correlation is the maximal value of the cross cor-
relation, maxi(f ? g)i, which is the inner product under the best
scoring alignment between the two time signals. Although this quan-
tity has good properties such as symmetry, and accounts well for the
alignment of the two signals, it does not define a valid kernel; the
corresponding gram matrix may not be positive definite [20]. In-
stead, we define a cross-correlation kernel as a weighted combina-
tion of the elements of the cross-correlation, such that the maximum
value of the cross-correlation has a larger weight compared to the
remaining values:

K(f , g) = 1

N

∑
i

exp (γ · (f ? g)i) , (2)

where γ is a positive parameter which governs the relative contribu-
tion of the individual terms – as γ increases, the contribution of the
maximum values of the cross-correlation is larger. It can be proved
that K(f , g) as defined above is indeed a proper kernel [20].

For the circular cross-correlation, one way to compute this is
through the Fourier Transform. Using the properties of the Fourier
Transform it is straightforward to see that [19]

K(f , g) = 1

N

∑
i

exp
(
γ · F−1 (F(f) · F(g)∗)i

)
(3)
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where F(f) is the Fourier transform of f , F−1 is the inverse Fourier
transform operator, and F(g)∗ is the component-wise complex con-
jugate of F(g). Using the Fast Fourier Transform algorithm to com-
pute the Fourier transforms, the complexity of computing K(f , g)
is O(N logN) [21]. While this is less computationally expensive
to compute than other time-signals kernels, it is still significantly
more expensive than computing a simple inner product, which has a
complexity of only O(N). The difference is even greater when the
sequences must be increased in length by zero-padding, in order to
compute the linear cross-correlation via circular cross-correlation.

This leads us to the key challenge addressed in this paper. The
cost of computing the kernel is a significant component of both train-
ing and evaluating kernel machines such as SVMs. For SVMs in
particular, for non-linear kernels such as the cross-correlation ker-
nel, we must solve the dual form of the optimization to train the
model, which requires the computation of a gram matrix. Gram ma-
trix computation scales quadratically (both in time and storage com-
plexity) with the number of training samples. Thus, for the cross-
correlation kernel, training the SVM with L training samples would
require O(L2N logN) computations, just for the gram matrix. In
addition, given a model with V support vectors, the inference would
require O(V N logN) computations per sample to be classified.

In such situations, it is well known that random projections of
the data can be used to derive simpler, lower-dimensional represen-
tations of the data on which the kernels can be approximated, to de-
rive savings in both computation and storage [22] [23]. This method
has been successfully applied to both inner-product kernels of high-
dimensional data [24] [25], and to a variety of non-linear kernels
[26] [27], although in the latter case the actual manner of computing
the random features depends on the kernel.

In this paper we extend this principle to derive a randomized
scheme for computing lower-dimensional representations of time-
signals data, from which cross-correlation kernels can be computed
through a simple inner-product computation. We call these random
convolutional features.

The proposed method has multiple desirable features. The com-
putation of random features makes no assumption about the length
of the time signals; this is, the number of components in the low-
dimensional representation depends only on the energy in the sig-
nal, and not on the number of samples in it. In practice, the num-
ber of components required is generally smaller than the length of
the time signal itself. Thus the cost of computing a kernel thus
becomes that of computing a low-dimensional inner product. For
energy-normalized signals, this becomes a fixed-dimensional com-
putation. The final benefit is one that is common to most random-
feature-based approximations of kernel functions: since kernel com-
putation now becomes an inner product, the training of the SVM
can be solved in its primal form, eliminating the need for the gram
matrix. The time and space complexity of the model too simply be-
come the size (number of components) in the random feature itself;
the cost of inference reduces to that of deriving the projection itself.

This paper is organized as follows. In Section 2 we describe
our proposed random feature construction providing some theoreti-
cal guarantees to validate its use. In Section 3, we present a experi-
mental results on a number of data sets, showing that these benefits
come at no cost to classification performance, which remains compa-
rable to that obtained with the full cross-correlation kernel. Finally,
in Section 4, we conclude analyzing the scope of this techniques and
discussing future directions.

2. METHODS

In this section we describe the construction of our random feature
scheme that approximates the cross-correlation kernel.

First, we present our scheme, named random convolutional fea-
tures, which defines a random mapping from time signals to a low di-
mensional space, approximating the cross-correlation kernel through
the computation of inner products between random features. Later,
we show theoretical guarantees to validate the approximation to the
cross-correlation kernel.

Notation: We use N as the dimension of original vectors as well as
the length of time series, M as the dimension of random features,
and L as the number of training samples. We use uppercase letters
to denote matrices and lowercase boldface letters to denote vectors.
All norms in this paper are `2-norm, denoted by ‖ · ‖.

2.1. Random Convolutional Features

As its name says, the random feature scheme presented in this pa-
per is based on a convolutional operation. The randomness of this
features comes from its parameters which are randomly generated
according to some particular distributions.

Definition. Let γ be a positive number. LetW = {w1, ...,wM} be
a set of M random time signals of length N , where each component
is random and independently generated according to a Gaussian dis-
tribution N (0, γ), and U a set M scalars where each one is random
and independently generated using a uniform distribution between 0
and 2π. We define a random convolutional feature as the random
mapping ψW,U,γ : RN → RM as follows:

ψW,U,γ(f)i =

√
2

N
√
M

exp
(γ
2
‖f‖2

) N∑
j=1

cos ((wi ∗ f)j + ui)

where ∗ denotes the convolution operation between signals. Algo-
rithm 1 summarizes the process to compute random features from
time signals.

Data: Time signals {f1, f2, ..., fL} with length N
Result: {z1, z2, ..., zL} Random Convolutional Features
initialization;
for i = 1, ...,M do

Draw wi random signal, with independent component
and each as Gaussian with 0 mean and variance γ;

Draw ui random scalar as uniform between 0 and 2π;
for k = 1, ..., L do

Compute E =
√
2

N
√
M

exp
(
γ
2
‖fk‖2

)
;

Compute signal s = wi ∗ fk;
Compute C =

∑
j cos(sj + ui);

Define (zk)i = E · C ;
end

end
Return {z1, z2, ..., zL}, where ψW,U,γ(fk) = zk

Algorithm 1: Random Convolutional Features computation

2.2. Theoretical Results

The following results show the relation of the random convolutional
features to the cross-correlation kernel. The first result analyzes the
expected values of inner products between random features while
the second shows how to use these inner products.
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Fig. 1. Approximation of Cross-correlation Kernel through inner product of Random Features. (Left) Effect of the number of components
in the random mapping on the approximation error for Kernel estimation. (Right) Pairwise comparison between the cross-correlation and its
estimation through random features. Each dot is a corresponds to a pair (f1, f2). We considerM = 1024. Both figures where generated using
the Gun-Point data set from [28]

Theorem 1. For any time signals f1, f2 ∈ RN , the expected value
of the inner product between their corresponding random mappings
ψW,U,γ(f1) and ψW,U,γ(f2) is given by:

E
(〈
ψW,U,γ(f1) , ψW,U,γ(f2)

〉)
= K

(
f1 , f2

)
=

1

N

N∑
i=1

exp
(
γ · (f1 ? f2)i

)
Proof. (see appendix)

Thus, the cross-correlation kernel corresponds to the expected
value of the inner product between the proposed random features.
Furthermore, we can analyze the convergence of actual inner product
to the kernel function. The following statement, based on applying
Hoeffding’s inequality, provides some guarantees.

Theorem 2. If we have a set of L time signals of length N , T =
{f1, f2, ..., fL}, and C ≥ ‖fi‖2 for all i, then, considering M ≥
16 exp(2γC)

ε2
log
(
L
η

)
, we have

P
(
∀fi, fj ∈ T ,

∣∣∣〈ψW,U,γ(fi) , ψW,U,γ(fj)〉−K(fi, fj)∣∣∣ < ε
)

≥ 1− η
Therefore, the probability of obtaining a small error in the es-

timation of the kernel using the inner product between random fea-
tures depends on the number of components in the random features
and the energy of the time signals. Figure 1 illustrates this.

Applying this technique to SVMs has several advantages. In
case of using directly the cross-correlation kernel, we know that
for training we need to obtain the gram matrix which requires
O(L2N logN) computations. Alternatively, we can compute ran-
dom features and train a linear model using a fast implementation.
Obtaining the random features requires O(MLN logN). So, if
M � L, we can observe a natural advantage in the training phase.
In the case of inference, using the kernel function directly requires
to store O(V N) values and perform O(V N logN) operations for
each prediction, where V is the number of support vectors. On the
other hand, using random features, we must store O(M) values and
perform O(MN logN) computations for each prediction. Then, in
case of M � V we get a benefit for inference computation, while
having M � V N gives benefits in model storage.

3. EXPERIMENTS

As a proof of concept, we applied the presented technique over 15
different data sets for the task of time signals binary classification.
This section aims to show the benefits of the modeling capabilities of
the cross-correlation kernel as well as analyze the benefits of using
random convolutional features with linear SVM over the raw time
signals with the cross-correlation kernel.

3.1. Datasets

For our experiments, we used 15 data sets provided by the University
of California, Riverside time series classification archive [28]. Each
data set consists of equal-length time series belonging to one of two
classes. The data sets selected and details about the size of the train-
ing and testing sets, as well as the time series length are presented in
table 1.

Beside the sample points, this archive also provides the predic-
tion error of three different classification methods; 1-Nearest Neigh-
bor using Euclidean distance, 1-Nearest Neighbor using Best Warp-
ing Window DTW, and 1-Nearest Neighbor using DTW with no
Warping window.

3.2. Results using Nonlinear SVM with Cross-correlation kernel

First, we evaluate the capabilities of the cross-correlation kernel over
the 15 data sets presented in table 1 using a SVM classifier based on
this kernel.

To select the hyperparameters γ that defines the kernel, and C
corresponding to the SVM cost, we performed a grid search consid-
ering γ ∈ {2−10, 2−9, ..., 2−1, 1} and C ∈ {10−4, 10−2,1 ,102

, 104}, doing the selection through jack-knife cross-validation. In
table 1 the selected parameters can be found, as well as their corre-
sponding error classification rate.

We can observe that in 11 of 15 data sets, SVM models with
cross-correlation kernel outperform alternative methods. This shows
empirically the utility of this kernel function.
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Table 1. Results in Binary Classification Task.
Data set SVM with Cross-Correlation Kernel SVM with Random Convolutional Features Other Methods

Signal
Length

γ C Error
Rate M = 25 M = 26 M = 27 M = 28

1-NN
Euclidean
Distance

1-NN Best
Warping Window

DTW

1-NN DTW,
no Warping

Window

Gun-Point 150 0.0625 0.0001 0.013 0.035 0.031 0.028 0.025 0.087 0.087 0.093
Lightning-2 637 0.0156 0.0001 0.230 0.282 0.252 0.224 0.212 0.246 0.131 0.131
ECG 96 0.0313 1 0.100 0.159 0.142 0.130 0.129 0.120 0.120 0.230
Coffee 286 0.0313 0.0001 0.000 0.012 0.007 0.003 0.000 0.000 0.000 0.000
ECGFiveDays 136 0.1250 0.0001 0.005 0.009 0.003 0.006 0.002 0.203 0.203 0.232
MoteStrain 84 0.2500 0.0001 0.265 0.274 0.246 0.238 0.255 0.121 0.134 0.165
SonyAIBORobot Surface 70 0.1250 0.0001 0.068 0.237 0.212 0.183 0.182 0.305 0.305 0.275
SonyAIBORobot SurfaceII 65 0.0625 0.0100 0.132 0.199 0.194 0.187 0.168 0.141 0.141 0.169
TwoLeadECG 82 0.2500 0.0001 0.011 0.036 0.024 0.021 0.016 0.253 0.132 0.096
BeetleFly 512 0.0156 0.0001 0.050 0.303 0.292 0.270 0.242 0.250 0.300 0.300
BirdChicken 512 0.0078 0.0100 0.200 0.171 0.176 0.185 0.204 0.450 0.300 0.250
Ham 431 0.0313 0.0001 0.305 0.309 0.311 0.309 0.300 0.400 0.400 0.533
Herring 512 0.0010 100,000 0.359 0.418 0.424 0.421 0.407 0.484 0.469 0.469
ToeSegmentation1 277 0.0313 0.0001 0.118 0.274 0.248 0.225 0.221 0.320 0.250 0.228
ToeSegmentation2 343 0.0039 1.0000 0.123 0.182 0.157 0.140 0.136 0.192 0.092 0.162

3.3. Results using Linear SVM with Random Features

To analyze the utility of our proposed random features we trained
linear SVMs using different values of M . To select the hyperparam-
eters we proceeded as before. In table 1 we present the error rates
we obtained. We can observe how the error rate changes as the num-
ber of components on the random features increases. In general, we
observe that error rate decreases as M increases; except for the case
of the data set BirdChicken.

Moreover, in 7 of 15 data sets the difference between the non-
linear method compared to the linear method is less than 1% using
256 or less components in random features, and in other 4 data sets
the difference is less than 5%. This diversity is due the complexity of
finding the decision boundary, as is established in [24]. We note that,
even with 32 components the loss of performance be can considered
acceptable in several cases.

4. CONCLUSIONS

In this paper we presented a random feature scheme that allows us to
transform time signals into a low dimensional vectors, and used them
to approximate the cross-correlation kernel through a simple inner
product computation. Our main contribution was to show theoretical
guarantees to validate this approximation. We studied this scheme
with SVMs for Time Signal Classification. The proposed random
feature provides minimal loss of performance in several cases, re-
ducing storage and transforming a non-linear learning problem into
a linear one. This has a significant implication in big data scenarios,
where a large number of signals must be processed.

Moreover, the presented scheme has other potential applications.
For example, with this technique we could train compact models on
devices; linear models are much simpler to train than kernel-based
models, specially with low dimensional data. Another application is
related to cloud computing and privacy. In case we need to process
sensitive time signals (e.g. medical or financial data), we can apply
this random mapping keeping the random parametersW and U pri-
vate. Then, we can still process the transformed data in the cloud,
hiding in somehow information without exposing the original data.

Finally, we think this work can provide some guidelines to un-
derstand other methods based on cross-correlation, such as Convo-
lutional Neural Networks. In fact, previous works have shown that
it is possible to obtain good performance even without training the
random initialized filters [29], being consistent with our results.

5. APPENDIX

Proof Theorem 1.
Since w are totally random, we can interchange the convolutional
operation by a cross-correlation.

E (ψW,U,γ(f1)i · ψW,U,γ(f2)i)

=
2

N2M
exp

(γ
2
‖f1‖2

)
· exp

(γ
2
‖f2‖2

)
·

E

[(
N∑
j=1

cos ((wi ? f1)j + ui)

)
·

(
N∑
j=1

cos ((wi ? f2)j + u)

)]

=
2

N2M
exp

(γ
2
‖f1‖2

)
· exp

(γ
2
‖f2‖2

)
·

E

 N∑
j=1,k=1

cos ((wi ? f1)j + ui) · cos ((wi ? f2)k + ui)


but, by definition of cross-validation, we know that (w ? f)j =
〈w , f(j)〉, where f(j) is the circular shifted version of f shifted by j
positions. Then, from [25], we have

E [ψW,U,γ(f1)i · ψW,U,γ(f2)i]

=
2

N2M
exp

(γ
2
‖f1‖2

)
· exp

(γ
2
‖f2‖2

)
·

N∑
j=1,k=1

E
[
cos ((wi ? f1)j + ui) · cos ((wi ? f2)k + ui)

]

=
1

N2M

N∑
j=1,k=1

exp(γ〈f1(j) , f2(k)〉)

but, we know that 〈f1(j) , f2(k)〉 = 〈f1 , f2(k−j)〉. Therefore,

E [ψW,U,γ(f1)i · ψW,U,γ(f2)i] =
1

N2M
·N

N∑
j=1

exp(γ〈f1 , f2(j)〉)

=
1

NM

N∑
j=1

exp(γ(f1 ? f2)j)

Finally, using the linearity of expectation, we get the desired result.
�
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