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ABSTRACT

Texture synthesis techniques based on matching the Gram matrix
of feature activations in neural networks have achieved spectacular
success in the image domain. In this paper we extend these techniques
to the audio domain. We demonstrate that synthesizing diverse audio
textures is challenging, and argue that this is because audio data is
relatively low-dimensional. We therefore introduce two new terms to
the original Grammian loss: an autocorrelation term that preserves
rhythm, and a diversity term that encourages the optimization pro-
cedure to synthesize unique textures. We quantitatively study the
impact of our design choices on the quality of the synthesized audio
by introducing an audio analogue to the Inception loss which we
term the VGGish loss. We show that there is a trade-off between the
diversity and quality of the synthesized audio using this technique.
Finally we perform a number of experiments to qualitatively study
how these design choices impact the quality of the synthesized audio.

1. INTRODUCTION

Texture synthesis has been studied for over fifty years [1]. The prob-
lem is to take a sample of some textured data (usually an image)
and generate synthesized data which have the same texture, but are
not identical to the original sample. This problem is interesting as a
machine learning problem in its own right, but successful texture syn-
thesis methods can also elucidate the way in which humans perceive
texture [2].

Portilla and Simoncelli [3] pioneered a very successful approach
to image texture synthesis that tries to find a complete set of statistics
that describe the perceptually relevant aspects of a given texture. To
synthesize a new texture, a random input is perturbed until its statistics
match those of the targets. Portilla and Simoncelli [3] developed a
set of four classes of statistics consisting of 710 parameters which
produced extremely realistic images of natural and synthetic textures.
McDermott and Simoncelli [2] used a similar approach to develop
four classes of statistics in a cochlear model to synthesize textural
audio spectrograms. This work produced convincing audio data
for many natural audio textures (e.g., insects in a swamp, a stream,
applause), but had difficulty with pitched and rhythmic textures (e.g.,
wind chimes, walking on gravel, church bells).

Gatys et al. [4] introduced an extremely successful technique that
replaced hand-crafted statistics with Gram-matrix statistics derived
from the hidden feature activations of a trained convolutional neural
network (CNN). By perturbing a random input to match these Gram
matrices, Gatys et al. [4] produced compelling textures that were far
more complicated than those achieved by any earlier work.

∗Work done as a Google AI resident.

Given the success of Gatys et al. [4] in the image domain relative
to the hand-crafted approach of Portilla and Simoncelli [3], it is natu-
ral to ask whether a similar CNN-based strategy could be adapted to
the audio domain to build on the hand-crafted approach of McDer-
mott and Simoncelli [2]. Ulyanov and Lebedev [5] proposed just such
an extension of the approach of [4] to audio. Their basic approach
works fairly well on many of the 15 examples they consider, but (as
we demonstrate in Sec. 3) it has some of the same failure modes as
the approach of McDermott and Simoncelli [2].

In this work, we examine the causes of these problems, analyze
why they are more serious in the audio domain than in the image
domain, and propose techniques to fix them.

2. METHODS

2.1. Signal processing

We produce audio textures by transforming the target audio to a log
spectrogram and synthesizing a new spectrogram. We then use the
Griffin-Lim algorithm [6] to invert the spectrogram and generate
the synthesized audio texture. If necessary, we resample the target
audio to 16 kHz and normalize. We produce a spectrogram by taking
the absolute value of the short-time Fourier transform with a Hann
window of size 512 samples and a hop size of 64 samples. Although
taking the absolute value removes any explicit phase information,
if the hop size is less than or equal to half the window size phase
information is implicitly retained (i.e., there exists a unique audio
signal corresponding to such a spectrogram up to a global phase; [7]).
We then add 1 to every magnitude in the spectrogram and take the
natural logarithm. Adding 1 guarantees that the log-spectrogram is
finite and positive.

2.2. Architecture of the neural networks

We obtained the best textures with a set of six single-hidden-layer
random CNNs. Unlike the case of image texture synthesis, audio spec-
trograms are one-dimensional so we therefore use a one-dimensional
convolution. Each CNN had a convolutional kernel with a different
width, varying in powers of 2 from 2 to 64 frames. We applied a
ReLU activation after the convolutional layers. Each layer had 512
filters randomly drawn using the Glorot initialization procedure [8].
Several authors have found that random convolutional layers perform
as well as trained convolutional layers for image texture synthesis
[9, 10]. Shu et al. [11] furthermore showed that a random CNN
retains as much information to reconstruct an image as a trained con-
volutional network, if not more. Although we also tried synthesizing
textures with an audio model that was trained on AudioSet [12], a
dataset consisting of about one million 10 second audio clips with
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527 labels, we did not find that this trained model produced textures
that were any better than those produced by a random CNN.

Using an ensemble of CNNs with varying kernel sizes is crucial
for obtaining high quality textures since each kernel size is most sensi-
tive to audio features whose duration is comparable to the kernel size.
The features of real-world audio can span many different timescales
(e.g., just a few milliseconds for a clap and up to several seconds
for a bell) so it is important to use an architecture which is sensitive
to the range of timescales that is likely to be encountered. We con-
sider the impact of our architecture design choices experimentally in
Section 3.3.

2.3. Loss terms

The loss we minimize consists of three terms:

L = LGram + αLautocorr + βLdiv. (1)

The first term, LGram, was introduced by Gatys et al. [4] and is
intended to capture the average local correlations between features
in the texture. The second term, Lautocorr, we adapt from Sendik
and Cohen-Or [13] and is intended to capture rhythm. The final
term, Ldiv, we introduce to prevent the optimization process from
exactly copying the original texture. The hyperparameters α and β
are used to set the relative importance of these three terms. We find
that α = 103 and β = 10−4 work well for many of the textures we
studied, although hyperparameter tuning is sometimes required. In
particular, highly rhythmic textures generally require a larger choice
of α and a lower choice of β.

2.3.1. Gram loss

Let us write the features of the kth convolutional network as F ktµ,
where t indicates the position of a patch in the feature map (i.e., the
time in the spectrogram), and µ indicates the filter. The Gram matrix
for the kth convolutional network is the time-averaged outer product
between the kth feature map with itself:

Gkµν =
1

T

∑
t

F ktµF
k
tν , (2)

where T is the number of windows in the spectrogram
We match this statistic by minimizing the Frobenius norm of the

difference between the Gram matrices of the synthesized texture and
the target for all layers and normalizing to the Frobenius norm of the
target texture Gram matrix:

LGram =
∑
k,µ,ν(G

k
µν−G̃

k
µν)

2∑
k,µ,ν(G̃kµν)

2 . (3)

Throughout this paper tilde denotes the target texture.

2.3.2. Autocorrelation loss

While minimizing the Gram loss alone produces excellent audio for
many kinds of audio textures, we show in Sec. 3.2.1 that the Gram loss
fails to capture rhythm. To this end, we adapt a loss term introduced
by Sendik and Cohen-Or [13] derived from the autocorrelation of
the feature maps that was developed to capture periodic structure in
image textures.1 The autocorrelation of the kth feature map is

Akτµ = F−1
f

[
Ft[F

k
tµ]Ft[F

k
tµ]

∗
]
, (4)

1Note that Sendik and Cohen-Or [13] use a variant of the feature map
autocorrelation called the structural matrix, but we find that the autocorrelation
works well and is faster to compute.

where Ft represents the discrete Fourier transform with respect to
time t, ∗ represents complex conjugation, and τ represents the lag.
The autocorrelation loss is the sum of the normalized Frobenius
norms of the squared differences between the target and synthesized
autocorrelation maps:

Lautocorr =
∑
k,τ,µ(A

k
τµ−Ã

k
τµ)

2∑
k,τ,µ(Ãkτµ)

2 . (5)

We generally do not expect to encounter rhythmic structure on
timescales longer than a few seconds, and autocorrelations on ex-
tremely short timescales (under 200 ms) are captured within the
receptive fields of individual networks. Including very short and long
lags in the loss tends to encourage overfitting without adding any
useful rhythmic activity to the texture (this is particularly true for
lags near 0 since the autocorrelation will always be largest there and
will therefore be the largest contributor to Lautocorr). For this reason
we only sum over lags of 200 ms to 2 s.

2.3.3. Diversity loss

As we show in Sec. 3.2.2, a downside of using the previous two
loss terms alone is that they tend to reproduce the original texture
exactly. Sendik and Cohen-Or [13] proposed a diversity term for
image texture synthesis of the form

LSendik = −
∑
k,t,µ

(
F ktµ − F̃ ktµ

)2
, (6)

which is maximized when the two feature maps match exactly. We
found that this diversity term has two shortcomings: first, because
this term can become arbitrarily negative, it can dominate the total
loss and destabilize the optimization; second, we find that this loss
has a tendency to reproduce the original input, but slightly shifted
in time (see Fig. 1). To address these two issues, we propose the
following shift-invariant diversity term:

Ldiv = maxs

( ∑
k,t,µ(F̃

k
tµ)

2∑
k,t,µ(Fkt+s,µ−F̃ktµ)

2

)
, (7)

where the shift s can take on values ranging from 0 to T − 1, with
T being the number of STFT frames in the spectrogram. In other
words, we compute the negative inverse of the diversity term of Eq. 6
for all possible relative shifts between the original and synthesized
textures and then take the maximum. Since computing this loss for
all possible shifts is computationally expensive, we compute this loss
in steps of 50 frames, cycling through different sets of frames in each
step of the optimization process, along with computing the loss for
the shifts which yielded the largest loss in the last 10 optimization
steps.

2.4. Optimization

We find that the bounded limited-memory BFGS algorithm [14]
works well to minimize the loss and obtain high quality audio tex-
tures. We optimized for 2000 iterations and used 500 iterations of
the Griffin-Lim algorithm. We furthermore found it useful to include
the diversity loss term for only the first 100 iterations; by this point
the optimizer had found a nontrivial local optimum, and continuing
to incorporate the diversity loss reduced texture quality. Audio and
spectrograms for our synthesized textures, along with supplementary
information and figures for our experiments can be found at https:
//antognini-google.github.io/audio_textures/.
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Fig. 1. The inverse negative diversity term used by Sendik and Cohen-
Or [13] as a function of a synthesized texture shifted in time. The
synthesized texture closely matches the original texture, but is shifted
in time by about five seconds. LSendik fails to capture this effect as
demonstrated by the sharp peak. Inset zooms in on the peak to show
that the peak is resolved.

3. EXPERIMENTS

3.1. Quantitative evaluation of texture quality

Quantitatively evaluating the quality of generative models is difficult.
Salimans [15] developed a useful quantitative metric for comparing
generative adversarial networks based on the Kullback-Liebler diver-
gence of the label predictions given by the Inception classifier [16]
between the sampled images and the original dataset. We adapt this
“Inception score” to assess the quality of our audio textures compared
to other methods. Rather than Inception, we use the “VGGish” CNN2

that was trained on AudioSet.3 The motivation for our “VGGish
score” is that the label predictions produced by the VGGish model
should match between the original and synthesized textures. To this
end, we define the score as

SVGGish ≡ exp [Ex [KL (pVGGish(y|x̃) || pVGGish(y|x))]] , (8)

where y represents the VGGish label predictions and x represents the
texture audio. We compute SVGGish over the 168 textures used by
McDermott and Simoncelli [2]. These textures span a broad range of
sound, including natural and artificial sounds, pitched and non-pitched
sounds, and rhythmic and non-rhythmic sounds. We compare this
VGGish score between our models optimized with different loss terms
and the approaches used by Ulyanov and Lebedev [5] and McDermott
and Simoncelli [2] in Table 1, separating out the scores for pitched
and rhythmic textures. We also compare an autocorrelation score
and a diversity score computed from the generated spectrograms
discussed in Sections 3.2.1 and 3.2.2, respectively.

The best VGGish scores are obtained by using LGram alone. As
expected, adding Lautocorr substantially reduces the autocorrelation
score, though at the cost of increasing the diversity score, and adding
a larger weight to Ldiv generally reduces the diversity score. The
lowest diversity scores are obtained by McDermott and Simoncelli

2Available from https://github.com/tensorflow/models/
tree/master/research/audioset.

3VGGish produces 128 dimensional embeddings rather than label predic-
tions. To obtain label predictions we trained a set of 527 logistic regression
classifiers on top of the AudioSet embeddings (AudioSet’s 527 classes are
not mutually exclusive.) We trained for 100,000 steps with a learning rate of
0.1 and achieved a test accuracy of 99.42% and a test cross entropy loss of
0.0584.

[2], though at the cost of substantially higher autocorrelation scores
and relatively large VGGish scores for pitched textures.

It is unsurprising that adding Ldiv reduces the VGGish score
because introducing any diversity will generally reduce the VGGish
score (the model could achieve a perfect VGGish score simply by
copying the original input). It is, however, surprising that adding
Lautocorr alone also reduces the VGGish score. Although introducing
Lautocorr qualitatively seems to increase overfitting, this overfitting
occurs on very long timescales (i.e., the model will reproduce several
seconds that sound very similar to the original audio). Introduc-
ing Lautocorr seems to make the optimization process more difficult
for timescales much shorter than the minimum lag considered by
Lautocorr, which leads to lower quality on short timescales and thus
higher VGGish scores.

3.2. Effect of the different loss terms

3.2.1. Autocorrelation loss

To demonstrate the necessity of Lautocorr we synthesize textures with
a variety of values of α. For simplicity we set β = 0 in these exper-
iments (i.e., we exclude Ldiv from the total loss). If the weight of
Lautocorr is small, the synthesized textures reproduce tapping sounds
which lack the precise rhythm of the original. Only when α is suffi-
ciently large is the rhythm reproduced. We compute the squared loss
between the autocorrelation of each synthesized texture and its target
texture, normalized to the Frobenius norm of the autocorrelation of
the target texture and present these scores in Table 1. Qualitatively
we find that, as expected, Lautocorr is most important in textures with
substantial rhythmic activity and so it is useful to use a relatively
large value for α for these rhythms. For textures without substantial
rhythmic activity we find that a smaller choice of α produces higher
quality textures.

3.2.2. Diversity loss

To demonstrate the effect ofLdiv we synthesize textures with a variety
of values of β, keeping α fixed to 103. Smaller values of β generally
reproduce the original texture but shifted in time (about 2 s for the
wind chimes and about 3.25 s for speech). Larger values of β produce
spectrograms which are not simple translations of the original input,
but the quality of the resulting audio is much lower. In the case of the
wind chimes the chimes do not have the hard onset in the original, and
in the case of speech the voice is echoey and superimposes different
phonemes. This is an instance of a more general diversity-quality
trade-off in texture synthesis. In Fig. 2 we show the VGGish score
(a rough proxy for texture quality) vs. the weight on the diversity
term. As the weight on the diversity term increases, the average
quality decreases. We furthermore calculate the diversity loss on the
spectrograms themselves to get a diversity score and present these
scores in Table 1.

We find that it is crucial to tune the loss weights for different
texture classes in order to obtain the highest quality textures. Large α
and large β, for example, is especially important for reliably gener-
ating rhythmic textures. Pitched audio generally requries a smaller
choice of α and β. For non-textured audio like speech and music,
high quality audio is only obtained with a large α and small β, which
will only reproduce the original with some shift; since these kinds of
audio do not obey the assumptions required for texture synthesis (i.e.,
stationary statistics over long time periods), any set of weights that
does not reproduce the original will produce low quality audio.
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Table 1. A comparison of scores between our model and other work.

VGGish (×10−4) Autocorrelation Diversity
Rthm. Ptch. Other Rthm. Ptch. Other Rthm. Ptch. Other

Spectrograms recovered via Griffin-Lim 9.7 12.6 7.1 7.4 0.54 2.9 21.4 29.7 22.7
McDermott and Simoncelli [2] 16.7 33.2 8.3 542.0 408.1 421.9 1.6 1.6 2.0
Ulyanov and Lebedev [5] 13.4 26.8 10.0 40.6 23.3 27.4 2.9 3.0 3.3
LGram [4] 9.9 16.8 7.3 29.0 9.7 6.5 2.4 3.0 3.5
LGram + Lautocorr 17.8 21.3 17.9 13.3 7.4 15.6 3.4 5.4 5.0
LGram + Lautocorr + Ldiv (β = 10−5) 14.5 23.0 12.2 13.0 2.3 7.2 3.8 6.8 4.4
LGram + Lautocorr + Ldiv (β = 10−3) 14.9 19.0 10.0 4.7 3.7 7.1 5.0 4.9 3.9
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Fig. 2. The diversity-quality trade-off in texture synthesis. The
VGGish score is a rough proxy for texture quality, with lower scores
representing higher quality textures. As the diversity weight increases,
the average quality of the textures decreases.

3.3. Neural network architecture

The receptive field size of the convolutional kernel has a strong
effect on the quality and diversity of the synthesized textures. We
experiment with the effect of changing the receptive field size for two
textures by using the same set of single layer CNNs with exponentially
increasing kernel sizes, but varying the maximum kernel size from
2 frames to 8. We find that CNNs with very small receptive fields
produce novel, but poor-quality textures that fail to capture long-range
structure. Networks with large receptive fields tend to reproduce the
original. This is an example of the quality-diversity trade-off in
texture synthesis.

Another design choice we consider is the number of filters in the
each network. We experimented with using 32, 128, and 512 filters
to synthesize two textures. Note that because there are six CNNs in
all with varying kernel sizes, the total number of activations varies
from 192 to 3072. We find that at least 128 filters are necessary to get
reasonable textures, but the quality continues to improve with 512
filters.

We also considered stacking six convolutional layers on top of
each other, each with a receptive field of 2 and separated by an
average pooling layer with a pool size of 2 and a stride of 2. This
network has the same distribution of receptive field sizes as the six
separate networks, but the input to each layer here must pass through
the (random) filters of all the earlier layers. We compared audio
generated with this network to the six separate networks that we
use elsewhere but find that the only effect of stacking the layers
is a modest degradation in the quality of long-range sounds, best
exemplified in the wind chimes texture.

4. CONCLUSIONS

We have demonstrated that the approach to texture synthesis described
by Gatys et al. [4] of matching Gram matrices from convolutional
networks can be extended to the problem of synthesizing audio tex-
tures. There are, however, certain differences in the audio domain
vs. the image domain that require the addition of two more loss terms
to produce diverse, robust audio textures: an autocorrelation term to
preserve rhythm, and a diversity term to encourage the synthesized
textures to not exactly reproduce the original texture. We test our
technique across several classes of textures like rhythmic and pitched
audio and find that tuning the weights on the autocorrelation and
diversity terms is crucial to obtaining the highest quality textures for
different classes. The choice of architecture is also important to ob-
tain high quality textures; an ensemble random convolutional neural
networks with a wide range of receptive field sizes allows the model
to capture features that occur on timescales across many orders of
magnitude. Finally, we show that this method has a trade-off between
the diversity and the quality of the results.
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