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ABSTRACT

The central task in graph-based unsupervised feature selec-
tion (GUFS) depends on two folds, one is to accurately char-
acterize the geometrical structure of the original feature space
with a graph and the other is to make the selected features well
preserve such intrinsic structure. Currently, most of the exist-
ing GUFS methods use a two-stage strategy which constructs
graph first and then perform feature selection on this fixed
graph. Since the performance of feature selection severely
depends on the quality of graph, the selection results will be
unsatisfactory if the given graph is of low-quality. To this
end, we propose a joint graph learning and unsupervised fea-
ture selection (JGUFS) model in which the graph can be ad-
justed to adapt the feature selection process. The JGUFS ob-
jective function is optimized by an efficient iterative algorith-
m whose convergence and complexity are analyzed in detail.
Experimental results on representative benchmark data sets
demonstrate the improved performance of JGUFS in compar-
ison with state-of-the-art methods and therefore we conclude
that it is promising of allowing the feature selection process
to change the data graph.

Index Terms— Unsupervised feature selection, struc-
tured graph learning, non-negativity, joint learning, clustering

1. INTRODUCTION

We are often confronted with high dimensional data in re-
search fields such as machine learning and signal processing,
which consumes a lot of computing and storage resources.
However, it is usually unnecessary to represent data with such
high dimensional feature space which may contain redundant
and irrelevant information. Generally, there are two differ-
ent kinds of approaches to obtain the low dimensional repre-
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sentation of data corresponding to its intrinsic dimensionali-
ty, feature extraction and feature selection [1]. In this paper,
we focus our topic on feature selection, especially the GUFS,
in order to simultaneously improve the learning performance,
provide faster and more cost-effective predictors, and provide
a better understanding of the underlying data generation [2].

The performance of GUFS severely depends on the qual-
ity of the predefined graph. As pointed by Wight et al. [3], an
informative graph should satisfy three properties: high dis-
criminative power, low sparsity and adaptive neighborhood.
Though a lot of studies were conducted to improve the quality
of constructed graphs [4, 5, 6, 7, 8, 9, 10, 11], there still exists
a serious drawback in most of the existing GUFS methods,
that is, they employ a two-stage strategy in which the feature
selection is conducted on a fixed graph. This may cause that
the constructed graph cannot well adapt to the objective with
respect to feature selection. To alleviate or partially solve
such limitation in GUFS, we propose a new JGUFS model
to jointly learn an optimal graph and perform feature selec-
tion. The main contributions of this paper can be summarized
as follows. 1) In contrast to most existing GUFS methods
which divide the graph construction and feature selection in-
to separate stages, JGUFS can jointly learn the data affinity
matrix and perform feature selection. Therefore, the feature
selection process is allowed to adjust the graph. The resultant
graph can well adapt to the feature selection, leading to bet-
ter clustering performance. 2) Develop and test an efficient
iterative algorithm to optimize the JGUFS objective function
with convergence and complexity analyzed. 3) Experiments
by comparing JGUFS with state-of-the-art methods show that
it can significantly improve the clustering results.

2. THE PROPOSED JGUFS MODEL

2.1. Model Formulation

In JGUFS, we learn an optimal structured graph S based on
an initial graph A. Concretely, we expect S to approximate A
but with some desirable properties including non-negativity,
row-sum-to-one and constrained rank [12]. The second
constraint means the sum of entries in each row of S should
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be equal to one. The third constraint means the graph Lapla-
cian LS should satisfy rank(LS) = n − c if S is expected to
be exactly c block diagonals (n samples should be clustered
into c clusters). The objective of structured graph learning is

min
S
∥S−A∥2F , s.t. S1 = 1,S ≥ 0, rank(LS) = n−c. (1)

Based on Ky Fan’s Theorem [13], the rank constraint on
LS can be converted to the optimization on pseudo clustering
indicator matrix F ∈ Rn×c and then we can rewrite (1) as

min
S,F
∥S−A∥2F+αTr(FTLSF), s.t.S1 = 1,S ≥ 0,FTF = Ic,

where α > 0 is usually a large enough regularization param-
eter. Therefore, by simultaneously performing the structured
graph learning and the ℓ2,1-norm based feature selection [14],
we can formulate the objective function of JGUFS as

min
S,W,F

∥S−A∥2F + αTr(FTLSF) + β(∥XW − F∥2F + γ∥W∥2,1)

s.t. S1 = 1,S ≥ 0,FTF = Ic,F ≥ 0,
(2)

where X ∈ Rn×d is the data matrix, W ∈ Rd×c is the pro-
jection matrix, β and γ are regularization parameters. Similar
to [15, 16], we impose the non-negativity on F here.

2.2. Optimization to JGUFS

Obviously, since the objective (2) is not jointly convex with
respect to S, W and F, we cannot get the analytical closed-
form solutions to them. Therefore, we propose an iterative
algorithm to alternately update each of them.

1) Update S. The objective associated with S is

min
S1=1,S≥0

∥S−A∥2F + αTr(FTLSF), (3)

which can be decoupled in scalar form as

min∑
j sij=1,sij≥0

n∑
i,j=1

(sij − aij)
2 + α

n∑
i,j=1

∥fi − fj∥2sij . (4)

Denote dij = ∥fi − fj∥22 and di as a vector with the j-th
element equal to dij . Similarly, we get si and ai and then
problem (4) can be rewritten in vector form as

min
si1=1,si≥0

∥si − (ai −
α

2
di)∥2F . (5)

This optimization problem can be solved with a closed form
solution by an efficient iterative algorithm [17].

2) Update W. The objective associated with W is

min
W
∥XW − F∥2F + γ∥W∥2,1. (6)

By introducing a diagonal matrix M with its i-th diagonal
entry defined as

mii =
1

2∥wi∥2
.
=

1

2
√
wiwT

i + ε
, (7)

where wi is the i-th row of W and ε is a small positive value,
we can reformulate (6) as

min
W
∥XW − F∥2 + γTr(WTMW). (8)

Taking the derivative of (8) with respect to W and setting it
to zero, we obtain a simple updating rule to W as

W = (XTX+ γM)−1XTF. (9)

3) Update F. In order to eliminate the orthogonal con-
straint, we add a penalty term λ

2 ∥F
TF − I∥2F in which λ is

usually a large value (we set it to 107 in all the following ex-
periments). Therefore, we have the objective related to F as

min
F≥0

αTr(FTLSF)+β∥XW−F∥2F +
λ

2
∥FTF−I∥2F . (10)

Since W is also related to F, by substituting (9) into (10), we
have the following optimization problem

min
F≥0

Tr(FTRF) +
λ

2
∥FTF− I∥2F , (11)

where R = αL + β(In − 2X(XTX + γM)−1XT ). The
Lagrangian function L of (11) is

Tr(FTRF) +
λ

2
∥FTF− I∥2F + Tr(ΦTF), (12)

where Φ is the Lagrange multiplier for the inequality con-
straint. Taking the derivative of L w.r.t. F and setting to zero,
we have

RF+ λF(FTF− I) +Φ = 0. (13)

Based on the KKT condition ϕijfij = 0, we can get following
updating rule for entries in F as

fij ← fij
(λF)ij

(RF+ λFFTF)ij
. (14)

After obtaining the updated F, we normalize it to satisfy the
orthogonal constraint FTF = Ic.

Based on the above analysis, we summarize our new
JGUFS in Algorithm 1.

2.3. Complexity and Convergence Analysis

The complexity of Algorithm 1 is mainly caused by the three
blocks in the loop. We need O(nt1) operations to obtain the
affinity matrix S by an efficient iterative method in which t1
is the number of iterations of the Newton method. We need
O(d3+nd2+ndc) operations to update W by (9) and O(cn2)
operations to update F in each iteration. Since c≪ d and t1 is
usually relatively small, the overall complexity of Algorithm
1 is O(t(d3 + nd2)) where t is the number of iterations.

We show that the derived updating rules in Algorithm 1
make the objective function monotonically decrease. With
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Wt and St fixed, by introducing an auxiliary function of
(10) similar to [18], we can prove that O(Ft+1) ≤ O(Ft).
Thus, we have O(Ft+1,Wt,St) ≤ O(Ft,Wt,St). If
(Ft+1, St) is the fixed point, we have O(Ft+1,Wt+1,St) ≤
O(Ft+1,Wt,St) based on the definition of M and deriva-
tions as in [14]. Since the updating to S is a closed for-
m solution, it is obvious that O(Ft+1,Wt+1,St+1) ≤
O(Ft+1,Wt+1,St) if (Ft+1,Wt+1) is a fixed point. We
conclude that JGUFS objective function monotonically de-
creases under the optimization in Alg. 1.

Algorithm 1 Optimization to JGUFS objective function
Input: Data matrix X ∈ Rn×d, α, β, and γ, c, the dimension

of projected subspace c;
Output: Rank features based on the values of ∥wi∥2|di=1 in

descending order and then select the top-ranked ones.
1: Initialization. Construct the initial graph affinity matrix

A based on the ‘HeatKernel’ function; Calculate F ∈
Rn×c by the c eigenvectors of the graph Laplacian LA =

DA−AT+A
2 corresponding to the c smallest eigenvalues;

Initialize M ∈ Rd×d as an identity matrix;
2: while not converged do
3: Update S by solving (5);
4: Update W by (9);
5: Update M by (7);
6: Update F by (14);
7: end while

3. EXPERIMENT

3.1. Experimental Settings for Clustering Problems

Seven benchmark data sets were used in the experiments in-
cluding JAFFE, UMIST, USPS, MNIST, COIL20, WebKB,
and ISOLET. In the experiments, we normalized feature into
[0,1]. Detailed information was demonstrated in Table 1.

Table 1. Dataset description.
Dataset # Samples # Features # Clusters
JAFFE 213 676 10
UMIST 575 644 20
USPS 9298 256 10

MNIST 5000 784 10
COIL20 1440 1024 20
WebKB 814 4029 7
ISOLET 1560 617 26

In the experiments, we set the projected dimension of sub-
space to the number of clusters, that is, W ∈ Rd×c. We set
the number of selected features as {50, 100, · · · , 300} for all
the data sets except USPS. Since the total features of USPS
are 256, we set them as {50, 100, · · · , 250}. Once obtaining
the selected features, we run ten times K-means clustering
from different staring points and report the average results
with standard deviations. Two metrics, i.e., Accuracy (AC-
C) and Normalized Mutual Information (NMI), were used
to measure the clustering performance. We compare JGUFS

with one baseline All-Fea and several state-of-the-art method-
s including MaxVar, LapScore [19], MCFS [20], FSSL [21],
UDFS [15], NDFS [16], and JELSR [22]. To keep fair com-
parison, we tuned the parameters involved in each method
from {10−3, 10−2, · · · , 103} and reported the best results un-
der the optimal parameter combination.

3.2. Experimental Results

Table 2 shows the results of all compared unsupervised fea-
ture selection methods. From the experimental results, we
have several findings: 1) Feature selection is effective and
necessary, which not only saves a lot of storage resources but
also considerably improves the clustering performance. In
most cases, feature selection methods can provide better per-
formance by using the selected feature subset than directly
using all features. 2) Both local structure and discriminative
information are beneficial since they can effectively charac-
terize the properties of data from two complementary per-
spectives which have been extensively investigated in both
supervised and unsupervised learning. 3) Evaluating features
jointly by employing the ℓ2,1-norm is more efficient than in-
vestigating features one after another based on certain criteria.
Generally, the results obtained by FSSL, UDFS, NDFS, JEL-
SR and JGUFS are better than those of MaxVar, LapScore
and MCFS. 4) Learning an optimal structured graph for un-
supervised feature selection is better than performing feature
selection on a fixed graph. Existing methods such as UDFS
and NDFS construct the graph using a predefined similarity
measure (i.e., ‘Heat Kernel’ function) which may not be ap-
propriate for all data sets. JGUFS can jointly perform feature
selection and graph learning in which the two sub-objectives
can co-evolve towards the optimum. It can effectively avoid
the limitations caused by the widely used two-stage strategy
in graph-based learning, that is, firstly constructing a graph
and then performing learning tasks on it. Therefore, JGUFS
achieves significant performance improvement in comparison
with state-of-the-art unsupervised feature selection methods.

3.3. Parameter Sensitivity and Convergence Study

In JGUFS, there are three regularization parameters; respec-
tively, α is to control the rank of the graph Laplacian matrix to
let the learned graph have the desirable block diagonal prop-
erty; β is to control the fitting error between the projected data
and the estimated scaled cluster indicator, and γ measures the
row sparsity of the projection matrix. Here we show the clus-
tering performance of JGUFS on ACC and NMI to illustrate
the impact of each parameter. We first fix two of the three
parameters as one and then investigate the clustering perfor-
mance in terms of the third one on different number of select-
ed features. Figure 1 illustrates the clustering performance
of JGUFS on COIL20 with different settings of parameters.
From this figure, we find that JGUFS is not sensitive to the
values of parameters in a wide range of variations. That is,
JGUFS provides excellent performance when the parameters
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Table 2. Comparison of performance of clustering for different feature selection methods (ACC/NMI±std%).
ACC JAFFE UMIST USPS MNIST COIL20 WebKB ISOLET

All-Fea 72.1±3.3 42.9±2.8 63.7±4.1 51.8±4.7 61.7±2.4 55.9±3.1 57.4±3.9
MaxVar 76.3±2.9 46.7±2.4 64.9±3.1 53.0±2.9 61.1±2.8 54.8±2.3 56.9±2.7

LapScore 77.2±3.2 45.8±3.0 64.1±3.2 53.9±3.5 62.1±2.1 56.1±2.8 56.8±2.9
MCFS 79.5±2.7 46.7±3.1 65.1±4.7 55.9±3.7 60.9±2.3 61.5±2.3 60.9±2.5
FSSL 85.6±2.2 51.9±3.3 66.5±2.4 57.1±3.8 62.5±2.8 62.3±2.7 64.9±3.1
UDFS 84.7±2.3 48.9±3.8 66.3±3.0 56.7±3.2 60.8±2.7 61.9±2.9 64.7±3.6
NDFS 86.9±2.5 51.1±3.7 66.9±2.7 58.5±2.8 63.3±2.1 62.5±3.0 65.1±3.9
JELSR 86.5±2.3 53.7±3.2 67.8±2.9 58.1±3.1 64.8±1.9 61.8±2.9 63.7±2.8
JGUFS 88.3±2.4 57.8±2.6 69.7±2.8 59.3±3.0 68.9±1.6 63.8±2.7 66.8±3.2
NMI JAFFE UMIST USPS MNIST COIL20 WebKB ISOLET

All-Fea 78.9±2.1 63.5±2.2 59.7±1.8 46.3±2.1 73.5±2.8 11.7±4.2 73.9±1.7
MaxVar 80.3±2.0 65.1±2.0 60.9±1.5 47.9±2.3 71.8±3.1 16.9±2.1 73.7±1.8

LapScore 81.9±1.8 64.7±2.6 60.3±1.3 48.3±2.0 73.9±2.9 13.4±3.5 72.1±1.1
MCFS 82.3±1.8 65.6±1.8 61.7±1.5 50.3±1.7 74.8±2.3 18.3±3.7 74.9±1.6
FSSL 88.6±1.3 67.7±2.0 62.3±1.3 50.8±2.1 75.1±2.7 18.5±3.5 76.8±1.7
UDFS 85.3±2.0 66.5±2.1 61.8±1.5 50.1±1.5 75.7±1.9 17.1±2.9 76.3±1.9
NDFS 87.6±1.9 68.9±2.5 61.3±1.1 51.6±1.1 77.3±1.8 17.6±2.7 78.4±1.2
JELSR 86.9±2.1 70.3±1.7 62.0±1.3 51.1±1.4 77.9±1.7 18.0±3.1 75.8±1.1
JGUFS 89.8±0.6 73.9±2.1 63.9±1.1 52.9±1.0 79.8±1.3 20.3±2.3 79.9±1.2

are set as different values in a wide range. Further, we can
observe that even if a small number of features are selected,
JGUFS can still achieve relatively good clustering results.
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Fig. 1. Performance of JGUFS algorithm for large variation
of set of control parameters.

As an experimental verification, Figure 2 shows the con-
vergence curves of the JGUFS objective function in terms of
the number of iterations on UMIST and COIL20 from which
we can observe that JGUFS has a relatively fast convergence
speed. Typically, it converges in less than 10 iterations which
reflects the proposed optimization method to JGUFS is effec-
tive. The converge curves for the other data sets share similar
properties.
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Fig. 2. Convergence speed of JGUFS for UMIST and
COIL20 data sets.

4. CONCLUSION

In this paper, we proposed a novel GUFS method, termed
JGUFS, which simultaneously performs graph construction
and feature selection. Instead of performing feature selection
on a fixed graph, JGUFS successfully avoided the disadvan-
tages caused by the two-stage strategy. In JGUFS, the sub-
objectives respectively corresponding to graph construction
and unsupervised feature selection could co-evolve towards
the optimum. An efficient iterative optimization method with
convergence guarantee was presented to optimize the JGUFS
objective. Extensive experiments were conducted on repre-
sentative data sets to demonstrate the excellent performance
of JGUFS in comparison with state-of-the-art methods.
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