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ABSTRACT

In this paper, we propose a scalable algorithm for spectral
embedding. The latter is a standard tool for graph clustering.
However, its computational bottleneck is the eigendecompo-
sition of the graph Laplacian matrix, which prevents its ap-
plication to large-scale graphs. Our contribution consists of
reformulating spectral embedding so that it can be solved via
stochastic optimization. The idea is to replace the orthog-
onality constraint with an orthogonalization matrix injected
directly into the criterion. As the gradient can be computed
through a Cholesky factorization, our reformulation allows us
to develop an efficient algorithm based on mini-batch gradi-
ent descent. Experimental results, both on synthetic and real
data, confirm the efficiency of the proposed method in term of
execution speed with respect to similar existing techniques.

Index Terms— Spectral Clustering, Stochastic Optimiza-
tion, Cholesky factorization, Multilayer Graph.

1. INTRODUCTION

Graphs are appealing mathematical tools for modelling pair-
wise relationships between data points, without being lim-
ited by the rigid structure of Euclidean spaces. In a graph,
the data points are represented as vertices, whereas the pair-
wise relationships between vertices are described by weighted
edges. Examples of graph-based representations can be found
in numerous application domains, such as biology, social net-
works, financial and banking, mobility and traffic patterns.

The main focus of this paper is spectral embedding,
which aims at representing the nodes of a graph into a low-
dimensional space that preserves the connectivity patterns
described by the graph edges. In this regard, one of most
popular approaches consists of embedding the graph vertices
into a subspace spanned by the eigenvectors of the graph
Laplacian matrix corresponding to the K smallest eigenval-
ues [1, 2]. This leads to an optimization problem that can be
solved by performing the eigendecomposition of the Lapla-
cian matrix [3]. However, this technique may not scale well
when the number of graph vertices grows big.
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A possible way to reduce the computational requirements
of eigendecomposition involves the use of Nyström method, a
random sampling technique to approximate the eigenvectors
of a large matrix [4]. Similarly, one can constrain the original
eigendecomposition problem to satisfy the Nyström formula,
so as to obtain a reduced-size problem that achieves a lower
approximation error [5].

An alternative approach to speed up the computation of
eigenvectors is to use the power method from the numerical
linear algebra literature [6]. From an optimization viewpoint,
the power method simultaneously updates all the coordinates
of the iterate, but they converge to the optimal value at differ-
ent speeds. Hence, it is possible to derive a coordinate-wise
version of the power method for a further speedup [7].

Yet another direction to efficiently deal with spectral em-
bedding involves the use of stochastic gradient optimization.
The idea is to cast the algebraic problem of identifying the
principal eigenvectors of a matrix as the optimization of a
trace function subject to an orthogonality constraint [8, 9].
Therefore, a natural way to tackle this problem consists of
using the notion of Riemannian gradients [10].

Contribution In this work, we propose a stochastic opti-
mization algorithm to deal with spectral embedding. Our
main contribution consists of reformulating the latter so that
the orthogonality constraint is replaced with an orthogonal-
ization matrix in the criterion. As the gradient can be com-
puted through a Cholesky factorization, our reformulation en-
ables us to develop an efficient algorithm based on mini-batch
gradient descent [11, 12]. The peculiarity of our approach is
that the graph nodes are processed by splitting them in chunks
of manageable size. This allows us to deal with much larger
graphs than those tackled by similar methods [3, 10].

Outline The paper is organized as follows. In Section 2, we
formulate the spectral embedding problem. In Section 3, we
describe the proposed reformulation and the stochastic gra-
dient optimization algorithm to solve it. In Section 4, we
compare our approach to similar spectral embedding meth-
ods. Finally, the conclusion is drawn in Section 5.
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2. PROBLEM FORMULATION

In this paper, we aim at clustering a graph G(V,E,W ) which
consists of a set V of vertices, and a set E of edges with non-
negative weights wi,j , where W = [wi,j ]i,j ∈ RN×N is the
weighted adjacency matrix, with wi,i = 0 for all i.

The degree of a vertex i in the graph G, denoted as d(i),
is defined as the sum of weights of all the edges incident to i
in the graph G. The degree matrix D is then defined as

Di,j =

{
d(i) if i = j

0 otherwise.
(1)

Based on W and D, the Laplacian matrix of G is

L = D −W. (2)

In the literature, L is called the unormalized Laplacian matrix.
There are also normalized versions of this matrix, such as

Lsym = D−
1
2 (D −W )D−

1
2 . (3)

The Laplacian matrix is of broad interest in the studies of
spectral graph theory [13]. Although closely related to each
other, the different definitions of the Laplacian matrix don’t
enjoy the same properties. For example, L and Lsym are both
real and symmetric matrices, but they have a different set of
eigenvalues and orthonormal eigenvectors. Moreover, each
definition of the Laplacian matrix comes with its own algo-
rithm to perform spectral embedding and clustering [14]. In
this paper, we use the unnormalized graph Laplacian L de-
fined above, since its eigenvectors are orthonormal and its
eigenvalues are non-negative, with the smallest equal to zero.

2.1. Spectral Clustering

Spectral clustering is a standard application of spectral em-
bedding [14–16]. The idea is to represent the data points to be
clustered as the vertices of a graph, whose edges describe the
pairwise relationships between those points (e.g., computed
with k-nearest neighbours). The core operation is to embed
the graph vertices in a low-dimensional space, where the pro-
jected points can be trivially clustered. More specifically, for
a K-way clustering, one aims at finding the semi-orthogonal
matrix U = [u1 | . . . |uN ]

> such that its rows un ∈ RK min-
imize the pairwise distances on the graph edges, namely

minimize
U∈RN×K

Tr(U>LU) :=

N∑
i=1

N∑
j=1

wi,j‖ui − uj‖2

s.t. U>U = IK×K. (4)

Each row of the matrix U is a point in the low-dimensional
space RK representing a graph vertex. Strongly-connected
vertices are thus mapped to close vectors in RK . One can
apply a K-mean algorithm on the rows of the solution Ū , so
that K clusters are formed by grouping together the vertices
that are the most strongly connected by the graph.

3. PROPOSED ALGORITHM

It is well known that the solution to Problem (4) is the ma-
trix formed by the eigenvectors associated to the K small-
est eigenvalues of the Laplacian matrix L. While there exist
many efficient algorithms for spectral embedding [3–7, 10],
they may not always scale well as the graph size N grows
big. Therefore, we propose an alternative approach to solve
Problem (4), which consists of reformulating the latter so that
it can be dealt with a stochastic optimization algorithm, such
as mini-batch gradient descent [11, 12].

3.1. Forward-backward splitting

The main difficulty in solving Problem (4) via gradient de-
scent arises from the orthogonality constraint. A possible way
to circumvent this issue is to make use of forward-backward
splitting [17], which boils down to the following iterations:

(∀t ∈ N) Ut+1 = QR
(
Ut − γtLUt

)
. (5)

Hereabove, LU is the gradient of 1
2Tr(U>LU), whereas the

operator QR(·) extracts the semi-orthogonal matrix Q ob-
tained with the QR decomposition of Ut − γtLUt. Indeed,
any rectangular matrix U ∈ RN×K with N ≥ K can be fac-
torized as U = QR, where Q ∈ RN×K is semi-orthogonal,
and R ∈ RK×K is upper triangular. This was the approach
followed in [10], where a Riemannian gradient was used
instead of the regular gradient.

3.2. Reformulation with implicit constraint

We propose an alternative approach to deal with the orthog-
onality constraint in Problem (4). Indeed, the latter can be
enforced implicitly by using the upper triangular matrix R of
the QR decomposition of U , which is defined as

U = QR. (6)

When U is positive definite, the QR decomposition is unique,
and R is equal to the upper triangular factor of the Cholesky
decomposition U>U = R>R. Then, it is possible to extract
the Q-factor of U as

Q = UR−1. (7)

This equality allows us to reformulate Problem (4) as

minimize
U∈RN×K

J(U) := Tr
(

(UR−1)>L(UR−1)
)
. (8)

Note that the matrix U is not semi-orthogonal, but UR−1 is.
Also, R is a function of U , for which we can compute the
gradient w.r.t. U [18]. Therefore, the reformulated problem
can be solved using standard gradient descent, yielding

(∀t ∈ N) Ut+1 = Ut − γt∇J(Ut). (9)
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3.3. Stochastic gradient descent

The main advantage in solving Problem (8) is that we can
modify the update in Eq. (9) by replacing the function J with
a stochastic approximation Jt, yielding

(∀t ∈ N) Ut+1 = Ut − γt∇Jt(Ut). (10)

Before we can define the above function Jt, let us denote
by I the set of indexes associated to the nonzero elements in
the upper triangular part of Laplacian matrix L, namely

I =
{

(i, j) ∈ {1, . . . , N}2 | wi,j 6= 0 and j > i
}
. (11)

The Laplacian matrix can be thus decomposed as follows

L =
∑

(i,j)∈I

wi,j

(
eie
>
i + eje

>
j − eie>j − eje>i

)︸ ︷︷ ︸
Li,j∈RN×N

, (12)

where en is the n-th column of the N × N identity matrix.
Thus, the original criterion in Problem (4) can be rewritten as

Tr(U>LU) =
∑

(i,j)∈I

Tr(U>Li,jU) =
∑

(i,j)∈I

wi,j‖ui−uj‖2.

(13)
To build the function Jt appearing in Eq. (10), at every

iteration t we select a subset of indexes

St ⊂ I, (14)

we use those indexes to build a partial Laplacian matrix

Lt =
∑

(i,j)∈St

Li,j , (15)

and we approximate the criterion in Eq. (8) as

Jt(U) := Tr
(

(UR−1)>Lt(UR
−1)
)
. (16)

Here is where the proposed reformulation comes into play. As
the term Lt contains many rows/columns filled with zeros, we
never have to work with the full-size matrix U . Specifically,
the function Jt(U) boils down to

Jt(U) :=
∑

(i,j)∈St

wi,j‖(ui − uj)>R−1‖2. (17)

As for the Cholesky decomposition U>U = R>R, we com-
pute the full-size matrix product at the algorithm initialization

M0 = U>0 U0. (18)

Since the update in Eq. (10) only modifies the terms ui and
uj such that (i, j) ∈ St, we can efficiently update it as

Mt+1 = Mt +
∑

(i,j)∈St

(
ui,t+1u

>
i,t+1 − ui,tu>i,t

)
+

∑
(i,j)∈St

(
uj,t+1u

>
j,t+1 − uj,tu>j,t

)
. (19)

Putting all together, we arrive at the proposed optimization
algorithm, which can be readily implemented with modern
tools for automatic differentiation [19].

4. NUMERICAL RESULTS

We evaluate the proposed algorithm in the context of multi-
layer graph clustering. An overview is given in the following.

4.1. Multilayer Graph Clustering

With the increasing richness of datasets, applications even
rely often on multiple sources of information to characterize
the relationships between data points. This leads to multi-
layer graph representations, where data points are modelled
as nodes shared across the layers, each of which describes
a set of relationships (graph edges) on their set of observa-
tions (shared graph nodes). For example, a social network can
be represented by a multilayer graph, where each layer cor-
responds to a different type of relationship among the same
group of persons, such as friendships, music interests, etc.

More precisely, a multilayer graph consists of S edge lay-
ers sharing the same vertices. Each layer s is represented by a
Laplacian matrix Ls, along with a spectral embedding matrix
Us obtained as the solution to Problem (4). These matrices
(Ls, Us)1≤s≤S can be merged into a representative embed-
ding matrix U via the minimization of the projection distance
in a Grassman manifold,1 defined as

dproj(U, {Us}1≤s≤S) = KS−
S∑

s=1

Tr
(
UU>UsUs>). (20)

Consequently, multilayer graph clustering boils down to [21]

minimize
U∈RN×K

Tr
( S∑

s=1

U>
(
Ls−αUsUs>)U)

s.t. U>U = IK×K. (21)

This is equivalent to perform spectral embedding on the ag-
gregated Laplacian matrix defined as

LMLG =

S∑
s=1

(Ls − αUsUs>), (22)

where α > 0 is a regularization parameter.
For the sake of completeness, note that there exist other

approaches to deal with a multilayer graph, such as averaging
the Laplacian matrices of individual layers [22–24], or treat-
ing them as points in a Grassmann manifold [21, 25–27].

1By definition, a Grassmann manifold is the set of K-dimensional linear
subspaces in RN . Each point in this manifold can be represented by a semi-
orthogonal matrixU ∈ RN×K . The distance between two pointsU1 andU2

is then defined based on a set of principal angles {θk}1≤k≤K between the
corresponding subspaces. These angles are the fundamental measure used
to define various distances on the Grassmann manifold, such as the squared
projection distance [20], defined as

d2proj(U1, U2) = K − Tr(U1U
>
1 U2U

>
2 )

3569



Fig. 1. Yelp data before the preprocessing of text reviews.

4.2. Datasets

In our experiments, we consider a synthetic dataset, as well
as a real dataset coming from the Yelp challenge. Both have
a multilayer graph representation of data.

As for the synthetic data, we consider a multilayer graph
with S = 3 layers and K = 5 clusters. Data points are drawn
from a Gaussian mixture model with five components, each
representing a cluster. The goal with this dataset is to recover
the five clusters of the graph vertices, using the layers con-
structed from the point clouds.

Yelp is a popular website for reviewing and rating local
businesses. In our experiments, we only extract star ratings,
text reviews, and review evaluations (users can mark reviews
as “cool”, “useful”, and “funny”), ignoring the other informa-
tion in the dataset. An example is shown in Fig. 1. Our goal is
to cluster the businesses by predicting their ratings (K = 3).

To build a multilayer graph on Yelp data, we proceed as
follows. We preprocess the text reviews using sentiment anal-
ysis. This yields a polarity score within the range [−1, 1] on
which we build a 5-nearest neighbor (NN) graph. We also
build a 5-NN graph on the other features (“cool”, “useful”,
and “funny” evaluations), leading to S = 4 graph layers.

4.3. Comparisons

We compare spectral embedding algorithms on Problem (21),
assuming that the aggregated Laplacian matrix defined in Eq.
(22) is given as input. This means that a spectral embedding
problem is solved to compute each matrix Us. For brevity,
these problems are not considered into our analysis.

Problem setting We evaluate the performance of three
spectral embedding algorithms: matrix eigendecomposi-
tion [3], stochastic forward-backward splitting [10], and our
method described in Section 3.3. Note that “matrix eigende-
composition“ uses the normalized version of the aggregated
Laplacian matrix. The normalization is important to obtain
a good clustering performance. However, this causes the
method to slow down considerably, which gives rise to the
interest of considering alternative approaches. The other
methods use the unnormalized Laplacian matrix.

Table 1. Clustering on synthetic data (N = 10′000).

Method Time Iter. Purity NMI RI

Eigendecomp. 36.3 s - 0.93 0.83 0.85
Stochastic FB 22.8 s 3000 0.94 0.84 0.86
Proposed 5.2 s 500 0.92 0.79 0.82

Table 2. Clustering on Yelp data (N = 11′160).

Method Time Iter. Purity NMI RI

Eigendecomp. 69.7 s - 0.87 0.65 0.56
Stochastic FB 50.6 s 3000 0.88 0.79 0.88
Proposed 11.4 s 500 0.86 0.71 0.84

Implementation details All the experiments were con-
ducted in Python/Numpy on a 40-core Intel Xeon CPU at 2.5
GHz with 128GB of RAM. As for the proposed method, we
used a step-size γ = 10−3, and mini-batches of size 4′000.
The latter is a critical parameter, as mini-batches should be
big enough to capture the structure of the Laplacian matrix.
For this reason, it is also highly important that mini-batches
are sampled at random from the entire dataset at each step,
and not be fixed across iterations.

Result analysis We use three criteria to measure the clus-
tering performance: Purity, Normalized Mutual Information
(NMI), and Rand Index (RI). The results reported in Tables 1
and 2 for both synthetic and Yelp data show that the proposed
method achieves almost the same clustering performance as
the matrix eigendecomposition, while being faster than the
other compared methods. The small differences in the perfor-
mance are related to the stochastic nature of our optimization
algorithm. Running it for less iterations would allow us to get
even faster results, yet less accurate. There is thus a tradeoff
between speed and accuracy, as usual in optimization.

5. CONCLUSION

In this paper, we proposed a reformulation of spectral em-
bedding that allowed us to devise a new optimization algo-
rithm based on stochastic gradient descent. The experimental
results showed that the proposed approach is more efficient
than matrix eigendecomposition and stochastic Riemannian
optimization on medium-size datasets. This confirms that our
approach is capable of scaling to larger datasets than what
similar spectral embedding methods can handle.

There are a number of extensions that we are currently in-
vestigating, such as the possibility to extend our approach to
the Riemann manifold of semi-positive definite matrices [28],
and to simultaneously compute the embedding matrices of
each layer and the aggregated graph. Moreover, a GPU imple-
mentation of the proposed algorithm is under development.

3570



6. REFERENCES

[1] E. Schaeffer, “Survey: Graph clustering,” Computer
Science Review, vol. 1, no. 1, pp. 27 – 64, Aug. 2007.

[2] S. Fortunato, “Community detection in graphs,” Physics
Reports, vol. 486, no. 3 – 5, pp. 75–174, Feb. 2010.

[3] M. Belkin and P. Niyogi, “Laplacian eigenmaps for di-
mensionality reduction and data representation,” Neural
Computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[4] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spec-
tral grouping using the Nyström method,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, pp. 214–225, 2004.

[5] M. Vladymyrov and M. Carreira-Perpinan, “The vari-
ational Nyström method for large-scale spectral prob-
lems,” in Proceedings of ICML, New York, USA, June
2016, vol. 48, pp. 211–220.

[6] C. Boutsidis, P. Kambadur, and A. Gittens, “Spectral
clustering via the power method – provably,” in Pro-
ceedings of ICML, Lille, France, July 2015.

[7] Q. Lei, K. Zhong, and I. S. Dhillon, “Coordinate-wise
power method,” in Advances in Neural Information Pro-
cessing Systems, pp. 2064–2072. 2016.

[8] Q. Xu, M. DesJardins, and K. Wagstaff, “Constrained
spectral clustering under a local proximty structure,”
Proceedings of the 18th International Florida Artificial
Intelligence Research Society, May 2005.

[9] X. Wang and I. Davidson, “Flexible constrained spectral
clustering,” Proc. of ACM SIGKDD, pp. 563–572, 2010.

[10] Y. Han and M. Filippone, “Mini-batch spectral cluster-
ing,” in International Joint Conference on Neural Net-
works, May 14–19 2017, pp. 3888–3895.

[11] S. J. Reddi, S. Kale, and S. Kumar, “On the conver-
gence of adam and beyond,” in Proceedings of ICLR,
Vancouver, Canada, May 2018.

[12] V. Dudar, G. Chierchia, E. Chouzenoux, J.-C. Pesquet,
and V. Semenov, “A two-stage subspace trust region
approach for deep neural network training,” in Proceed-
ings of EUSIPCO, Kos island, Greece, Sept. 2017.

[13] F. R. K. Chung, “Spectral graph theory,” CBMS
Regional Conference Series in Mathematics, American
Mathematical Society, 1997.

[14] U. von Luxburg, “A tutorial on spectral clustering,”
Statistics and Computing, vol. 17, no. 4, pp. 395–416,
2007.

[15] J. Shi and J. Malik, “Normalized cuts and image seg-
mentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 888–905, Aug.
2000.

[16] A. Ng, M. Jordan, and Y. Weiss, “On spectral cluster-
ing: Analysis and an algorithm,” Advances in Neural
Information Processing Systems, pp. 849–856, 2001.

[17] P. L. Combettes and V. R. Wajs, “Signal recovery
by proximal forward-backward splitting,” Multiscale
Model. Sim., vol. 4, no. 4, pp. 1168–1200, 2005.

[18] I. Murray, “Differentiation of the Cholesky decomposi-
tion,” Eprint arXiv:1602.07527, 2016.

[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in pytorch,” in Pro-
ceedings of the NIPS Workshop on Autodiff. 2017.

[20] J. Hamm and D. D. Lee, “Grassmann discriminant anal-
ysis: A unifying view on subspace-based learning,” in
Proceedings of ICML, Helsinki, Finland, 2008.

[21] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov,
“Clustering on multi-layer graphs via subspace analysis
on grassmann manifolds,” IEEE Transactions on Signal
Processing, vol. 62, no. 4, pp. 905–918, 2014.

[22] A. Argyriou, M. Herbster, and M. Pontil, “Combin-
ing graph laplacians for semi-supervised learning,” Ad-
vances in Neural Information Processing Systems, 2005.

[23] L. Tang, X. Wang, and H. Liu, “Community detec-
tion via heterogeneous interaction analysis,” Data Min.
Knowl. Discov., vol. 25, no. 1, pp. 1–33, Jul. 2012.

[24] P.-Y. Chen and A. O. Hero, “Multilayer spectral graph
clustering via convex layer aggregation: Theory and al-
gorithms,” arXiv:1708.02620, 2017.

[25] V. Sindhwani and P. Niyogi, “A co-regularization
approach to semi-supervised learning with multiple
views,” in ICML Workshop on Learning with Multiple
Views, 2005.
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