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ABSTRACT

The deep autoencoder network which is based on constrain-
ing non-negative weights, can learn a low dimensional part-
based representation. On the other hand, the inherent struc-
ture of the each data cluster can be described by the distri-
bution of the intraclass sample. Then one hopes to learn a
new low dimensional feature which can preserve the intrinsic
structure embedded in the high dimensional data space per-
fectly. In this paper, by preserving data distribution, a deep
part-based representation can be learned, and the novel algo-
rithm is called Distribution Preserving Network Embedding
(DPNE). In DPNE, we first need to estimate the distribution
of the original data, and then we seek a part-based representa-
tion which respects the distribution. The experimental results
on real-world data sets show that the proposed algorithm has
good performance in terms of cluster accuracy and adjusted
mutual information (AMI).

Index Terms— Distribution preserving, manifold struc-
ture, part-based representation, sparse autoencoder, cluster-
ing.

1. INTRODUCTION

Unsupervised learning is a branch of machine learning algo-
rithm that can learn inherent information from the unlabeled
observation data. In many problems, the observation sample
matrix is of very high dimension, for example, image and doc-
ument recognition. So it is infeasible to process the original
data directly [1]. One hopes then to learn a lower dimensional
representation which still retains the inherent structure of the
original data. In the last decade, a large number of linear and
nonlinear methods for unsupervised dimensionality reduction
have been proposed [2, 3].

The deep learning method, multilayer autoencoders are
the stacked feed-forward neural network and attempt to learn
a complex nonlinear mapping function, which can automat-
ically learn interesting feature from the input data [4]. For
this reason, the deep autoencoder has been applied to vari-
ous pattern recognition tasks, such as image and document
[5–7]. Recently, the novel clustering methods, Deep Embed-
ding Clustering (DEC) [6] and Deep Clustering Network (D-
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CN) [7] both make full use of the deep autoencoder to learn
the latent representation, and achieve good performance. On
the other hand, by constraining the non-negative property on-
to the two decomposition factors, NMF has been shown to
be suitable for learning the parts of objects [8]. So the non-
negative constraint autoencoder (NCAE) method is proposed
to learn a part-based representation using deep autoencoder
with non-negative constraint [9].

However, these algorithms do not well capture or even ig-
nore the nonlinear manifold structure imbedded in the high
dimensional data space. In general, the data is sampling from
the probability distribution that are near to a submanifold of
the ambient space [10, 11]. Moreover, the nonlinear manifold
structure of each class can be depicted by the distribution of
the intraclass members. The intraclass samples are general
located in a continuous high density area called density con-
nected, while the different cluster are connected by some low
density area called the border [12, 13]. Preserving this mani-
fold structure in the low dimensional feature space contributes
to finding a clean and discriminative representation [14].

In this paper, we demonstrate how to learn a meaning-
ful data representation that explicitly considers the manifold
structure. And we propose a novel dimensionality reduction
technique, called Distribution Preserving Network Embed-
ding (DPNE), which can learn a part-based representation us-
ing NCAE and simultaneously respect the distribution of high
dimensional data space. By estimating the distribution of high
dimensional space, we can encode the manifold information
embedded in the high dimensional data space. The goal of
the proposed dimensionality reduction technique is to learn a
meaningful data representation that can preserve the distribu-
tion of the high dimensional data space as much as possible.
As a consequence, two points that locate in a high density
area are putting as close together as possible in the low di-
mensional feature space, and two points that are connected
by low density area are far apart in the low dimensional rep-
resentation.

2. RELATED WORK

An autoencoder neural network is one unsupervised learning
algorithm, which can automatically learn feature and then re-
construct its input at the output layer [15]. It tries to learn two
functions, i.e., encoder function F (x) and decoder function
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G(F (x)). The encoder function F (x) maps the input data
to the feature space. Specifically, the computation of hidden
representation is given by

h(1) = F (x) = σ(ω(1)x+ b(1)) (1)

where x is the input data, ω(1) denotes the weight, b(1) repre-
sents the bias, and σ(·) is the activation function. The decoder
function G(F (x)) reconstructs the input data according to the
representation space. And the computation of reconstructing
the input data is as follows,

x̂ = G(h(1)) = σ(ω(2)h(1) + b(2)) (2)

where ω(2) denotes the weight and b(2) represents the bias. To
optimize the parameters of the autoencoder neural network,
i.e., Ω = {ω(1), ω(2), b(1), b(2)}, the average reconstruction
error is used as the objective function,

O(Ω) = min
Ω

1

N

N∑
i=1

∥xi − x̂i∥2F (3)

where N represents the number of input data.
Using the stack autoencoder contributes to discovering the

latent structure embedded in the high dimensional space [4,
16]. Generally, a weight decay term is added to the (3) to
help prevent overfitting [17]. And the final cost function of
autoencoder is defined as

O(Ω) =
1

N

N∑
i=1

∥∥∥xi −G(h
(L

2 )
i )

∥∥∥2
F
+

β

2

L∑
l=1

sl−1∑
i=1

sl∑
j=1

(ω
(l)
ij )

2 (4)

where Ω = {ω(l), b(l)} denotes the parameters of the model
with multiple hidden layers, the even L denotes the number
of layers, β denotes the regularization parameter, sl−1 and sl

are the sizes of adjacent layers, and h
(L

2 )
i denotes the output

of L
2 -th layer, i.e., the final low dimensional representation of

sample xi.
When the number of hidden units is large, imposing some

constraints on the hidden layers contributes to maintaining
the proper number of active neuron [17]. Imposing a spar-
sity constraint on the hidden units, the autoencoder will still
extract the latent structure hidden in the input data [18]. En-
forcing the activation of hidden units to be near 0 is a common
imposing the sparsity constraint method [19]. The average ac-
tivation of the hidden unit j is defined as

p̂j =
1

N

N∑
i=1

Hij (5)

where Hij denotes the j-th element of the i-th hidden repre-
sentation (i.e., hi). By constraining the p̂j = p (p is a small
positive value close to 0, for example, p = 0.05), the sparsity

can be enforced [17]. Using the Kullback-Leibler divergence
can achieve the constraint, i.e., p̂j = p

KL(p ∥ p̂) =

sl∑
j=1

p log
p

p̂j
+ (1− p)log

1− p

1− p̂j
(6)

To achieve sparsity constraint for the autoencoder neural
network, an extra penalty term is added to the objective func-
tion (4), and the final objective function of sparse autoencoder
(SAE) can be written as

O(Ω) =
1

N

N∑
i=1

∥∥∥xi −G(h
(L

2 )
i )
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F
+ αKL(p ∥ p̂)

+
β

2
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sl∑
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(ω
(l)
ij )

2 (7)

Many researches have demonstrated that utilizing the ben-
efits of part-based representation with non-negative constraint
can improve the performance of deep neural network [20, 21].
To encourage the connecting weight ω(l) to be non-negative,
the regularization parameter in (7) is replaced as a quadratic
function [20]. Thus, the objective function of non-negative
constraint autoencoder (NCAE) can be written as

O(Ω) =
1

N

N∑
i=1

∥∥∥xi −G(h
(L

2 )
i )

∥∥∥2
F
+ αKL(p ∥ p̂)

+
β

2

L∑
l=1

sl−1∑
i=1

sl∑
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J(ω
(l)
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where

J(ω
(l)
ij ) =

{
(ω

(l)
ij )

2, ω
(l)
ij < 0,

0, ω
(l)
ij > 0.

(9)

3. THE PROPOSED APPROACH

3.1. The Standard Kernel Density Estimation

Our early researches in manifold learning [13, 14] have
demonstrated that preserving the nonlinear manifold structure
of original data in the low dimensional space can be achieved
by minimizing the inconsistence of two distributions [22].
Due to the lack of prior knowledge, it is desirable to use the
popular kernel density estimation to approximate the truth-
ful distributions of data in high dimensional space and low
dimensional space, respectively.

f(x) =
N∑
i=1

f(x|xi) =
c

NbMx

N∑
i=1

κ

(∥∥∥∥x− xi

bx

∥∥∥∥2
)
(10)

g(h) =
N∑
i=1

g(h|hi) =
c

NbDh

N∑
i=1

κ

(∥∥∥∥h− hi

bh

∥∥∥∥2
)

(11)
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where κ(∥x∥2) is called profile of the kernel, M is the
dimension of the original high dimensional data space,
D is the dimension of the learned representation hi and
c is a positive normalization constant [23, 24]. The pa-
rameters bx and bh should satisfy the nonlinear equation
N∑
i=1

KB(x − xi)log2(KB(x − xi)) = log2(t) and t is set to

20 [13]. To preserve the distribution of original data in the
low dimensional feature space, Kullback-Leibler divergence
criterion can be used to measure the inconsistency,

f(x) log
f(x)

g(h)
(12)

3.2. k-Nearest Neighbour Kernel Density Estimation

We use the kernel density estimation to capture the manifold
structure. Thus, the key problem for the proposed method is
how to estimate the density of samples. However, the stan-
dard kernel density estimation has poor performance in the
high dimensional space. The k-nearest neighbor kernel den-
sity estimation is a special case of the standard kernel density
estimation with the local variables. According to the number
of samples in a local region, we can smooth this estimator to
obtain the more approximate density [25, 26]. The k-nearest
neighbor kernel density estimation described in [25, 26] can
be written as

f(x, k) =
c

NdMx

N∑
i=1

K
(
x− xi

dx

)
(13)

where dx = d(x) is a Euclidean distance between x and the
k-th nearest neighbor of x among xj’s,

d(x) = min(k, {|x− xj |, j = 1, 2, · · · , N}), (14)

where min(k,A) is the k-th smallest element of the set A. So
the density of the given data is rewritten as

f(x) =
N∑
i=1

f(x|xi) =
c

NdMx

N∑
i=1

κ

(∥∥∥∥x− xi

dx

∥∥∥∥2
)

(15)

3.3. DPNE

If we assume the learning low dimensional feature preserves
the distribution of the given data very well, it follows that the
conditional density of the given data at point xi (xi ∈ X) and
the conditional density of the corresponding low dimensional
representation at point hi (hi ∈ H) will be equal. In oth-
er words, the goal of distribution preserving is to find a lower
dimensional representation H that minimizes the inconsisten-
cy between f(xi|xj) and g(hi|hj) for all (xi, hi). To achieve
the goal, we try to minimize the inconsistency between any
f(xi|xj) and g(hi|hj),

N∑
i=1

N∑
j=1

f(xi|xj) log
f(xi|xj)

g(hi|hj)
(16)

This paper does not focus on the choice of kernel func-
tion κ(·) in the step of kernel density estimation. So we em-
ploy the Gaussian kernel and Cauchy kernel to estimate the
distributions of high dimensional space and low dimensional
space, respectively. The Cauchy kernel is a long-tailed ker-
nel and has the ability to alleviate the crowding problem in
the low dimensional space [13, 14]. By minimizing (16), we
expect that if two samples xi and xj are close, the low dimen-
sional representations hi and hj are also close to each other,
and vice versa. Thus, as an extra penalty term, we add (16) to
the (8). The greedy layer-wise trained NCAE model is used
to initialize the proposed DPNE network, and the resulting
network is not imposed sparsity constraint in the fine-tuning
stage. The final cost function of the proposed DPNE network
is as follows

O(Ω, h) =
1

N

N∑
i=1

∥∥∥xi −G(h
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2 )
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β

2
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(l)
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+γ
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j=1

f(xi|xj) log
f(xi|xj)

g(h
(L

2 )
i |h(L

2 )
j )

(17)

where γ controls the penalty term facilitating distribution p-
reserving. We use the backpropagation algorithm to compute
the gradient descent of the (17) to optimize the network pa-
rameter Ω.

4. EXPERIMENTS

In this paper, we compare the representation space obtained
by the proposed DPNE to the classic and deep model al-
gorithms, i.e, k-means++ [27], Deep Embedding Clustering
(DEC) [6], Deep Clustering Network (DCN) [7], Sparse Au-
toencoder (SAE) [17], and Non-negative Constraint Autoen-
coder (NCAE) [9]. For the SAE, NCAE and DPNE model,
we use the k-means method to cluster the low dimensional
representation in our paper. The cluster accuracy (ACC) and
the adjusted mutual information (AMI) are employed to e-
valuate the performance of these different algorithms. The
default parameters for the compared algorithms are used. The
input parameters of our algorithm are as follows: regular-
ization parameters β = 0.003 and γ = 100, learning rate
η = 0.1, the number of layers L = 8, the number of itera-
tions maxiter = 400 and the number of nearest neighbors
k = 10. Same as the DEC and DCN, the list of the layer
size is M − 500 − 500 − 2000 − D (M ≫ D) [6, 7]. For
all methods, we repeat ten times to obtain reliable and stable
results of each data set. We evaluated our proposed method
against five widely used data sets: MNIST, Coil-100, YaleB,
Reuters21578 and RCV1.
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(b) NCAE (ACC = 51.72%)(a) SAE (ACC = 43.75%) (c) DPNE (ACC = 94.18%)

Fig. 1. Visualize the 2-dimensional representation space obtained by (a) SAE, (b) NCAE and (c) DPNE.

Table 1. Clustering results (%) of different methods.

ACC AMI
MNIST Coil100 YaleB Reuters RCV1 MNIST Coil100 YaleB Reuters RCV1

k-means++ 53.2 62.1 51.4 23.6 52.9 50.0 80.3 61.5 51.6 35.5
DEC 86.7 81.5 2.7 16.8 68.3 84.0 61.1 0.0 39.7 50.0
DCN 56.0 62.0 43.0 22.0 73.0 57.0 81.0 59.0 43.0 47.0
SAE 60.9 54.8 47.5 23.7 49.1 56.3 32.5 62.7 48.3 43.8

NCAE 65.6 57.9 50.9 31.2 50.3 59.8 34.8 65.1 47.5 44.9
DPNE 96.1 85.0 94.8 57.3 56.2 90.5 95.8 98.5 56.7 50.0

4.1. Visualization

In this section, when the high dimensional data is embedded
into a 2-dimensional plane, we analyze the outputs of SAE,
NCAE and DPNE, respectively. We use the randomly sam-
pled subset of 10000 observations from the MNIST data set
to verify this purpose. We visualize the 2-dimensional feature
space obtained by the SAE, NCAE and the proposed DPNE,
as shown in Fig. 1.

As we can see, the proposed DPNE can reorganize the lo-
cation of each sample in the 2-dimensional plane according
to the original data distribution, and these locations success-
fully reveal the manifold structure of the original data. We
also provide the corresponding cluster accuracy. Compare to
the SAE and NCAE, it is observed that preserving the distri-
bution of original data can significantly improve the cluster
accuracy.

4.2. Comparisons with Other Algorithms

Table 1 shows the clustering results (accuracy and AMI) of
different methods. As in the case of DEC and DCN models,
the dimension of the low dimensional representation (SAE,
NCAE and the proposed DPNE) is set to be 10, i.e., D = 10.
Compared to k-means, k-means++ can dramatically improve
both the speed and accuracy [27]. So we directly employ the
k-means++ to cluster the original data without dimensionality
reduction.

It is observed from Table 1 that the AMI of our DPNE
is consistent on the five data sets and the proposed DPNE can
achieve the highest accuracy on four of the five data sets. This
suggests the importance of inherent structure in learning the
low dimensional representation. We also observe that the N-
CAE outperforms the SAE, which means the superiority of
the meaningful representation idea in extracting the hidden
structure. By leveraging the superiority of both the part-based
representation and distribution preserving, the proposed DP-
NE can learn a better discriminative feature.

5. CONCLUSION

In this paper, we present a novel dimensionality reduction
method, called distribution preserving network embedding
(DPNE). In DPNE, we use the data distribution to approxi-
mate the latent geometrical structure embedded in the high
dimensional data space. And then the proposed DPNE can
learn a meaningful feature which respects to the above dis-
tribution. From analysis of the visualization results, the
2-dimensional part-based representation space obtained by
the DPHE preserves the structure buried in the original high
dimensional data as much as possible. The experimental
results on the image and text data sets, also show that the
proposed DPNE can learn a more discriminating feature.
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[21] Andre Lemme, René Felix Reinhart, and Jochen Jakob
Steil, “Online learning and generalization of parts-based
image representations by non-negative sparse autoen-
coders,” Neural Networks, vol. 33, no. 9, pp. 194–203,
2012.

[22] J Moser, “On the volume elements on a manifold,”
Transactions of the American Mathematical Society,
vol. 120, no. 2, pp. 286–294, 1965.

[23] Yizong Cheng, “Mean shift, mode seeking, and cluster-
ing,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 17, no. 8, pp. 790–799, 1995.

[24] D. Comaniciu and P. Meer, “Mean shift: A robust ap-
proach toward feature space analysis,” in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2002, pp. 603–619.

[25] M. Rosenblatt and Y. P. Mack, “Multivariate k-nearest
neighbor density estimates,” Journal of Multivariate
Analysis, vol. 9, pp. 1–15, 1979.

[26] Jan Orava, “K-nearest neighbour kernel density estima-
tion, the choice of optimal k,” Tatra Mountains Mathe-
matical Publications, vol. 50, no. 1, pp. 39–50, 2011.

[27] David Arthur and Sergei Vassilvitskii, “k-means++:the
advantages of careful seeding,” in Eighteenth Acm-
Siam Symposium on Discrete Algorithms, New Orleans,
Louisiana, 2007, pp. 1027–1035.

3566


		2019-03-18T11:10:26-0500
	Preflight Ticket Signature




