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ABSTRACT

Real-world data sets often provide several types of information about
the same set of entities, showing us how they interact from differ-
ent viewpoints. These data sets are well represented by multi-view
graphs, which consist of multiple edge sets across the same set of
nodes. Combining multiple views improves the quality of inferences
drawn from the underlying data, which has led to increased interest
in developing efficient multi-view graph embedding methods. We
propose an algorithm, C-RSP, that generates a common (C) embed-
ding of a multi-view graph using Randomized Shortest Paths (RSP).
This algorithm generates a dissimilarity measure between nodes by
minimizing the expected cost of random walks between any two
nodes across all views of the graph, in doing so encoding both the lo-
cal and global structure of the graph. We test C-RSP on both real and
synthetic data and show that it outperforms benchmark algorithms at
embedding and clustering tasks.

Index Terms— multi-view graphs, graph embedding, graph dis-
tances, randomized shortest paths, graph clustering

1. INTRODUCTION

To model and understand complex systems, we must consider how
different entities within a system relate to one another. Modeling
a system as a standard single-view graph is a natural first step, but
many relational data sets provide more than just one view of the
same underlying set of entities: examples include multiple modes
of interaction through social networks [1, 2], multi-omics measure-
ments in single cell RNA sequencing data [3, 4], and 2D projections
of a single 3D object captured from multiple vantage points for 3D
reconstruction [5, 6]. These systems are more accurately modeled
using multi-view graphs, which contain several distinct sets of edges
over the same nodes. Graph embeddings map the entities in the data
set to vectors in Euclidean space, which can be used for various ap-
plications such as data visualization, clustering, and link prediction.
These embeddings are normally done on single-view graphs, but this
idea can also be extended to multi-view data. Generally, incorporat-
ing multiple views of data with complementary information about
the nodes improves the accuracy of the embedding, increasing re-
cent interest in exploring multi-view graph embedding algorithms.

In this paper, we propose a generalized distance on multi-view
graphs called the Common Randomized Shortest Path (C-RSP)
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dissimilarity, based on the RSP dissimilarity on single-view graphs,
and we introduce a novel method of embedding multi-view graphs
using this new measure. We show experimentally that C-RSP
encodes the overall structure of a multi-view graph more effec-
tively than other benchmark multi-view graph algorithms, as shown
through better embedding and clustering performance on both syn-
thetic and real-world data sets.

Relation to Existing Work: In a multi-view graph embedding,
each node of the graph is assigned a vector that incorporates data
from all views of the graph. This type of embedding has been ac-
complished through algorithms based on techniques such as ma-
trix factorization [7–9], tensor factorization [10, 11], and spectral
embedding [12–14]. Most of these algorithms focus on clustering
multi-view graphs, a specific application of the embeddings gener-
ated. High clustering accuracy is an indicator of a good embedding
since relative similarity between nodes should be correctly reflected
in the embedding. The similarity between nodes of a graph is usu-
ally quantified by a distance measure, such as the shortest path or
geodesic distance or the commute time distance [15–17]. The com-
mute time distance in particular is known to encode the clusters of a
graph better than the shortest path distance [16, 18]. However, it has
been shown that for certain graphs, the commute time distance fails
to capture the global structure of the graph accurately [19]. Since
these measures are ill-suited for capturing both the local and global
structure of a graph simultaneously, there has been increased interest
in alternative distance measures that generalize these two [20–22].

The Randomized Shortest Path (RSP) dissimilarity [21] general-
izes the two distances by computing an intermediate measure defined
by a tunable parameter β. This measure, which is based on random
walks on a graph, is particularly suitable for graph embedding as it
preserves in the embedding space both the local and global features
of the manifold from which the data set is sampled. In this paper we
extend this distance measure for multi-view graphs as a simple but
highly effective algorithm for multi-view graph embedding.

2. C-RSP DISSIMILARITY

Mathematical Preliminaries: Let G = {V,E} be a simply con-
nected single-view graph, where V = {1, . . . , n} denotes the set
of nodes of the graph and E = {(i, j) | i, j ∈ V } denotes the set
of edges between nodes. This graph can be represented by its affin-
ity matrix A ∈ Rn×n, where aij 6= 0 for (i, j) ∈ E, aij = 0 if
(i, j) /∈ E. The degree matrix D ∈ Rn×n is the diagonal matrix
containing the degrees of the nodes on the diagonals.

We can compute the transition probability matrix P ref =
D−1A of the graph G, which is row-stochastic and defines a prob-
ability distribution on the edges of the graph. A random walk on
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the graph follows a sequence of nodes with the order determined
by these transition probabilities. Consider a particular path on this
graph starting at a source node s and a destination node t, denoted
by ps→t = {s, v1, v2, . . . , vt−1t}. Then the probability of the path
is given by the product P refs,v1P

ref
v1,v2 . . . P

ref
vm,t

, denoted P ref (ps→t).
We define the cost of each edge by a cost matrix C with elements
cij = a−1

ij where cij > 0. The total cost for path ps→t is given by
C(ps→t) = cs,v1 + cv1,v2 + . . .+ cvt−1,t.

An absorbing path is a path where the destination node t has no
outgoing edges except to itself (ct,t = 1, ct,k =∞ for t 6= k ∈ V ).
Let the set of all such absorbing paths be Ps→t. For C-RSP, we con-
sider only absorbing paths from s to t, and our path is denoted ps→t,
with the probability of the path under a given probability distribution
P denoted by P (ps→t) and the cost of traversing the path denoted
by C(ps→t). The expected cost of a random walk from source node
s to destination node t over distribution P is

∑
p∈Ps→t

P (p)C(p).

Randomized Shortest Paths Dissimilarity: The Randomized
Shortest Path (RSP) is defined to be the path between two nodes
with the minimum expected cost over all transition probability matri-
ces [21]. In order to constrain a random walk between two nodes to
an RSP, we compute a new probability distribution PRSP (p) which
minimizes the expected cost among all possible probability distri-
butions while maintaining fixed relative entropy or Küllback-Leibler
divergence with respect to the reference distribution P ref (p):

PRSP = argmin
P

∑
p∈Ps→t

P (p)C(p)

subject to
∑

p∈Ps→t

P (p) ln
P (p)

P ref (p)
= J0,∑

p∈Ps→t

P (p) = 1

(1)

where J0 ∈ R is the relative entropy between the distributions.
The solution to this constrained optimization is given by the fol-

lowing expression for any ps→t ∈ Ps→t [21]:

PRSP (ps→t) =
P ref (ps→t)e

−βC(ps→t)∑
p∈Ps→t

P ref (p)e−βC(p)
(2)

where as β →∞, the RSP dissimilarity reduces to the shortest path
distance and as β → 0, it reduces to the commute time distance.

The RSP dissimilarity between nodes s and t, denoted ∆RSP
st ,

is then calculated as follows:

Cst =
∑

p∈Ps→t

PRSP (p)C(p)

∆RSP
st =

Cst + Cts
2

.

(3)

Note that the computed RSP dissimilarity measure is termed a
“measure” instead of a “metric” since it does not follow the trian-
gle inequality for certain ranges of β used [21, 22]. Following the
derivation of the RSP dissimilarity by Yen et al. [21], an efficient
closed-form expression for its computation was found by Kivimäki
et al. [22]. The result of this algorithm was the symmetric matrix
∆RSP ∈ Rn×n, consisting of all pairwise RSP dissimilarities.

Deriving a Common RSP Probability Distribution: Here, we
extend the core RSP framework to generate a multi-view graph dis-
tance measure. If we represent a single-view graph by G = {V,E},
then a multi-view graph is denoted G = {V, (E1, . . . , Em)} where

each view is given by Gi = {V,Ei}. We represent this graph with
an n × n ×m affinity tensor, where each n × n slice of the tensor
Ai represents the affinity matrix for that edge set. Note that each Gi
is assumed to be a simply connected graph.

We first derive a common probability distribution, PCRSP , over
all views of the graph. This is accomplished by minimizing the ex-
pected cost for all possible paths on all views, with the condition that
the common distribution PCRSP and the reference probability dis-
tribution of each view, P refi , have the same fixed relative entropy.
This constrained optimization is represented as follows, with ref-
erence probability distributions P ref1 , . . . , P refm and cost matrices
C1, . . . , Cm:

PCRSP = argmin
P

m∑
i=1

∑
p∈Ps→t

P (p)Ci(p)

subject to
m∑
i=1

∑
p∈Ps→t

P (p) ln
P (p)

P refi (p)
= J0,∑

p∈Ps→t

P (p) = 1

(4)

To derive the common distribution (which we will call P for ease of
notation) under the given constraints, we use the following Lagrange
function:

L =

m∑
i=1

∑
p∈Ps→t

P (p)Ci(p) + µ

[ ∑
p∈Ps→t

P (p)− 1

]

+ λ

[ ∑
p∈Ps→t

P (p) ln
P (p)

P refi (p)
− J0

]
Considering only one path p, we obtain the following:

∂L
∂P (p)

=

m∑
i=i

Ci(p) + λ ln
Pm(p)∏m

i=1 P
ref
i (p)

+ λm+ µ = 0

or equivalently

ln
Pm(p)∏m

i=1 P
ref
i (p)

= − 1

λ

m∑
i=1

Ci(p)−
µ

λ
−m

which gives

P (p) = m

√√√√ m∏
i=1

P refi (p) · e
− 1
mλ

m∑
i=1

Ci(p)−
µ
mλ
−1

= P · e−βCe−
βµ
m
−1

where P(p) = m

√∏m
i=1 P

ref
i (p) and C(p) = 1

m

∑m
i=1 Ci(p), the

geometric and arithmetic means (taken element-wise).
Normalizing this to make it a probability distribution (which is

the same as RSP, detailed in [22]), we obtain the following expres-
sion for the C-RSP probability distribution for a single path:

PCRSP (ps→t) =
P(ps→t) · e−βC(ps→t)∑
p∈Ps→t

P(p) · e−βC(p)
(5)

With this combined probability distribution, we can use the same
algorithm for calculating the C-RSP dissimilarity matrix ∆CRSP as
in the RSP case, which this reduces to in the single layer case. To
obtain a multi-view graph embedding from the C-RSP dissimilarity,
we use Multi-dimensional Scaling on ∆CRSP . For clustering, we
use Spectral Clustering [18] on (∆CRSP )−1.
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(a) Swiss roll ground truth (in 3D), with holes in the blue and green areas.

(b) C-RSP embedding (c) SC-ML embedding

(d) CSC embedding (e) MultiNMF embedding

Fig. 1. Embeddings of the Swiss roll generated by C-RSP and other benchmark algorithms. C-RSP retains the Swiss roll shape as well as the
relative distances between nodes. SC-ML and CSC both use spectral embedding methods which preserve the relative distances of the nodes
but lose the overall structure, while MultiNMF uses a nonnegative matrix factorization to obtain the embedding vectors.

3. EXPERIMENTAL RESULTS

In order to evaluate the quality of the embedding produced by C-
RSP, we first tested it on a standard Swiss roll data set, a canonical
example used in manifold learning. Lacking a way of quantifying
the embedding accuracy, we visually compared it to the embeddings
generated by other multi-view algorithms. We also tested the perfor-
mance of our algorithm quantitatively at clustering tasks against a
number of benchmark multi-view graph clustering algorithms: SC-
ML [12], CSC [13], and MultiNMF [9]. As metrics, we used the
Normalized Mutual Information (NMI) between the labels generated
by each algorithm and the ground truth, as well as the correct clas-
sification rate (CCR). We used one synthetic data set generated us-
ing the Stochastic Block Model (SBM) [23,24] and three real-world
data sets commonly used for multi-view graph clustering tasks: UCI
Handwritten Digits1, 3Sources2, and Multi-view Twitter data3. Our
code is available online at https://github.com/Anu-Gamage/C-RSP.

Results on Synthetic Data: We first tested the quality of the
embeddings generated by C-RSP using the Swiss roll data set in fig-
ure 1. To obtain a multi-view graph from this data, the Swiss roll
was projected into two dimensions at various angles. An affinity ma-
trix for each view was constructed using the pairwise Euclidean dis-
tances between points. In the case of C-RSP, the embeddings were
generated from the output C-RSP dissimilarity matrix using Clas-
sical Multidimensional Scaling. For the benchmark algorithms, the
embedding vectors generated via each algorithm prior to the cluster-
ing step were used to visualize the Swiss roll embedding.

As seen in figure 1b, the C-RSP embedding accurately captures
the curvature of the Swiss roll and produces a slightly flattened ver-
sion of the original spiral structure. The embedding also retains the

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://mlg.ucd.ie/datasets/3sources.htm
3http://mlg.ucd.ie/aggregation/index.html

two holes present in the original Swiss roll data. The benchmark
algorithms SC-ML, CSC, and MultiNMF all fail to recover the spi-
ral structure and the holes, but retain the relative distances between
nodes with some accuracy. This is shown by the grouping of simi-
larly colored nodes in figures 1c-1e.

Next, we tested C-RSP on synthetic multi-view graphs generated
using the Stochastic Block Model [23,24], which is used to simulate
graphs with a latent cluster structure. To generate a graph under this
model, the nodes are partitioned into k equally sized clusters. Intra-
cluster edges are assigned with a probability of c

n
, to give an average

degree of c within the cluster; and inter-cluster edges are assigned
with probability c(1−λ)

n
, where λ is a parameter used to determine

how distinct the clusters should be: λ = 0.9 results in almost disjoint
clusters. To simulate multi-view graphs, we generatem independent
SBM graphs with the same set of parameters n, k, c, and λ, and the
same partition of nodes for each view. Since this process does not
necessarily produce connected graphs, we cull nodes that are not
connected in all of the views. In figure 2, we report the variation in
NMI as the number of views increases, as well as the variation across
multi-view graphs of different sparsities. In each case, C-RSP equals
or exceeds the clustering accuracy of the benchmark algorithms. We
note that Multi-NMF likely fares the worst on this data set as the
graphs are in binary format rather than real-valued data matrices.

Results on Real-world Data: We ran C-RSP and the bench-
mark algorithms on three widely used real multi-view data sets. In
Table 1, we report the NMI and CCR values for each algorithm.

The UCI data set analyzes 2000 images of handwritten digits 0-
9, giving feature matrices of Fourier coefficients, pixel averages, and
several other aspects of the images. In our experiments, we used 5 of
6 provided feature types as our views and used a Gaussian kernel to
construct affinity matrices: the affinity aij between nodes i, j with

feature vectors xi, xj is aij = exp

(
−‖xi − xj‖

2

2σ̃2

)
, with σ̃ the

3544



(a) NMI, varying number of views, c = 10 (b) NMI, varying graph sparsity, m = 2

Fig. 2. Simulation results on Stochastic Block Model graphs with n = 500, c = 10, k = 3,m = 2, λ = 0.9 unless otherwise specified,
averaged over 10 runs. As the number of views and average degree increases, all algorithms increase in accuracy, with C-RSP outperforming
all benchmark algorithms.

Metric Data Set C-RSP SC-ML CSC MultiNMF

CCR
UCI 86.96% (4.10%) 80.09 (6.76) 82.11 (7.99) 92.33 (0.03)

3Sources 58.22 (4.14) 51.48 (3.55) 43.55 (2.59) 34.50 (0.02)

MultiviewTwitter 82.84 (3.96) 69.86 (1.50) 49.54 (3.19) 56.67 (0.01)

NMI
UCI 0.80 (0.01) 0.76 (0.03) 0.78 (0.04) 0.88 (2e-4)

3Sources 0.56 (0.04) 0.42 (0.02) 0.31 (0.02) 0.07 (1e-4)

MultiviewTwitter 0.60 (0.04) 0.42 (0.01) 0.28 (0.01) 0.45 (1e-4)

Table 1. Clustering results on various real-world data sets over 10 runs, reporting the mean and the standard deviation in parentheses. CCR
is the correct classification rate and NMI is the normalized mutual information (in the range [0, 1]).

median pairwise Euclidean distance between all feature vectors.
The 3Sources data set contains information about a set of news

articles reported by three different news sources: the BBC, the
Guardian, and Reuters. It covers 416 distinct news stories, of which
169 are reported on by all three agencies. These stories are classified
under 6 disjoint clusters: business, entertainment, health, politics,
sport, and technology. The three sources provide different views of
the same news story, which can be represented as different views of a
multi-view graph. We extracted the common stories and constructed
an affinity matrix for each source using the same Gaussian kernel on
the feature vectors provided.

The Multiview Twitter data set consists of five Twitter user net-
works and records of their methods of interaction on Twitter. We
chose the politics-uk data set, 419 user accounts belonging to UK
political figures and organizations and 3 views of their interactions:
follows, mentions, and retweets. The user accounts form the nodes
of the graph, partitioned into 5 disjoint clusters based on political
party affiliation: Labour, Conservative, Scottish National Party, Lib-
eral Democrats, or other.

C-RSP significantly outperforms the benchmark algorithms on
the both the Multiview Twitter data set and the 3Sources data set
with respect to both CCR and NMI. On the UCI Handwritten Digits
data set, MultiNMF outperforms C-RSP by a decent margin, but C-
RSP still outperforms the other benchmarks in both metrics. The dip

in performance of C-RSP is likely due to the choice of the tuning
parameter β: in all experiments we chose β = 0.02 for C-RSP since
this was shown to be the optimal β value for RSP [22]. At this
tuning, the C-RSP dissimilarities tend towards the commute time
distances, which may capture the graph structure less effectively for
graphs with more than 1000 nodes [19], such as the UCI data set.
Overall, C-RSP provides superior clustering results, confirming that
good multi-view graph embeddings improves clustering accuracy.
Furthermore, C-RSP is highly robust, with relatively high accuracy
on many different types of data.

4. CONCLUSION

This paper introduced a novel distance measure for multi-view
graphs named C-RSP (Common Randomized Shortest Paths), an
extension of the RSP dissimilarity for single-view graphs. The C-
RSP measure is a generalization of the commute time distance and
the shortest path distance, which allows it to encode both local and
global structure of a multi-view graph. This leads to more accurate
graph embeddings, which can be used to improve performance in
downstream applications such as data visualization, clustering, and
link prediction. We tested C-RSP at both embedding and clustering
tasks and showed that it produces superior results compared to other
benchmark embedding algorithms.
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[1] Derek Greene and Pádraig Cunningham, “Producing a unified
graph representation from multiple social network views,” in
Proceedings of the 5th Annual ACM Web Science Conference,
New York, NY, USA, 2013, WebSci ’13, pp. 118–121, ACM.

[2] Yu Shi, Myunghwan Kim, Shaunak Chatterjee, Mitul Tiwari,
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[22] Ilkka Kivimäki, Masashi Shimbo, and Marco Saerens, “De-
velopments in the theory of randomized shortest paths with a
comparison of graph node distances,” Physica A: Statistical
Mechanics and its Applications, vol. 393, pp. 600–616, 2014.

[23] Paul Holland, Kathryn Laskey, and Samuel Leinhardt,
“Stochastic blockmodels: First steps,” Social Networks, vol.
5, pp. 109–137, 06 1983.

[24] Emmanuel Abbe and Colin Sandon, “Community detection in
general stochastic block models: Fundamental limits and ef-
ficient algorithms for recovery,” in Proceedings of the 2015
IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), Washington, DC, USA, 2015, FOCS ’15, pp.
670–688, IEEE Computer Society.

3546


		2019-03-18T11:03:11-0500
	Preflight Ticket Signature




